1) N (2,2,0) algebra
N(2.2.0)代数
3) N(2,0) algebra
N(2,0)代数
4) n-Lie algebra
n-李代数
1.
Properties of subideals of n-Lie algebras;
n-李代数次理想的性质
2.
This paper proves the classification theorem and the Levi decomposition theorem ofφ-free n-Lie algebras over the field of characteristic zero.
对φ-自由n-李代数的结构进行了研究,得到了特征零域上φ-自由n-李代数的分类定理及Levi分解定理,同时也得到了任意域上n-李代数可解的等价条件。
3.
This paper gives the sufficient and necessary conditions when an irreducible L(A)- module is an A-module,and gets the classification of finite dimensional irreducible represen- tations of simple (n+1)-dimensional n-Lie algebras.
本文证明了不可约的L(A)-模是A-模的充要条件,给出了单的n+1-维n-李代数的有限维不可约表示的分类。
5) n-Lie algebra
n-Lie代数
1.
Authors mainly study the classation of(n+1)-dimensional n-Lie algebras over the real field R,and discuss its inner derivation algebras.
研究了实数域R上的n+1维n-Lie代数的分类,并讨论了R上n+1维n-Lie代数的内导子代数。
2.
The non-decomposable non-Abelian(n+2)-dimensional maximal rank nilpotent n-Lie algebras are investigated.
根据最大秩幂零n-Lie代数的概念及有关结论,证明不可分解非Abel最大秩幂零的n+2维n-Lie代数在同构意义下只有一类,给出了具体的乘法表,并讨论了它的导子代数及其内导子代数。
3.
In this paper,the author studys the classifications of(n+1)-dimension n-Lie algebra on φ-free,and gives the examples to different cases.
对n+1维n-Lie代数关于φ-free的分类进行探讨,并给出相关实例。
6) n-Lie algebras
n-Lie代数
1.
In this paper, the authors study the nondegenerate invariant bilinear forms on n-Lie algebras.
该文研究n-Lie代数的非退化不变双线性型。
2.
The authors studied some structual properties on n+k dimensional n-Lie algebras,and proved that there exists a smallest ideal of n+k dimensionl n-Lie algebras,if the dimensions of any nonzero ideals are not less than k.
研究了n+k维n-Lie代数一些结构性质,并且证明了对于具有性质:任意非零理想其维数都大于或等于k的n+k维n-Lie代数一定存在最小理想。
3.
We are concerned with a class of finite-dimensional solvable n-Lie algebras.
研究一类有限维的可解n-Lie代数,提出了n-Lie代数的态像、态像结构和函子的概念,并对其性质进行了研究。
补充资料:代数的代数
代数的代数
algebraic algebra
代数的代数【aigeb面c aigeb口;缸代6脚盼贬军粗,即;浦钾! 域F上幂结合代数洲特别地结合代数飞.其所有兀素都是代数的几素a任月称为代数的(al罗bral口,如果由“生成的子代数F!a]是有限维的或等价地、兀素a有系数在基域F中的零化多项式).代数A称为有界次代数的代数(al罗braie al罗bra of bounded de-gee)如果它是代数的月其元素的极小零化多项式的次数的集合是有界的.有界次代数的代数的子代数与同态象仍是有界次代数的代数 例:局部有限代数(特别地有限维代数)、诣零代数及不可数域仁有。J数雌一成兀集的结合除环.下面假定所涉及的代数均为结合的,代数的代数的J匆以由son根(J aoobson radl以l)是诣零理想本原代数的代数A同构于除环上向匿空间的线性变换的稠密代数,如果A还是有界次的,则A同构于除环1的矩阵环.有限域上没有非零幂零元的代数的代数(特别地,除环)是交换的.因此,有限除环是交换的.有界次代数的代数满足一个多项式恒等式、见Pl代数(P卜algebra).代数的Pl代数是局部有限的.如果基域是不可数的,则由代数的代数通过基域的扩张所得到的代数,及代数的代数的张量积,都是代数的代数.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条