说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 一类递推关系
1)  a kind of recurrence relation
一类递推关系
2)  Recursion relation
递推关系
1.
Recursion relation of radial matrix elements of relativistic hydrogen atom of spin S=0;
相对论性无自旋氢原子的径向矩阵元的递推关系
2.
By exploring into the recursion relation of ladder resistance network, the formulas of calculating equivalent resistance and node voltage on ladder resistance network have been derived.
 通过求解梯形电阻网络中的递推关系,推导出计算梯形电阻网络中等效电阻和节点电压的通项公式;证明了无穷梯形电阻网络等效电阻为常数,且给出其计算公式;提出梯形电阻网络等效电阻按无穷网络简化计算的条件。
3.
By analyzing recursion relation of ladder resistance network, the formulas of calculating equivalent resistance and node voltages on ladder resistance network have been derived.
通过求解梯形电阻网络中的递推关系,推导出梯形电阻网络中等效电阻及节点电压 的计算通式;证明了无穷梯形电阻网络等效电阻为常数,且给出其计算公式;提出梯形电 阻网络按无穷网络简化计算的条件。
3)  recurrence relation
递推关系
1.
A class of Recurrence Relation soved by Using cteneral Functions Method;
利用母函数法解一类递推关系
2.
On the recurrence relation αα_(i-1,j-1)+βα_(i-1,j)=α_(i,j);
关于递推关系αa_(i-1,j-1)+βa_(i-1,j)=a_(i,j)
3.
A general recurrence relation for the radial matrix elements of harmonic oscillator;
谐振子径向幂坐标矩阵元的一般递推关系
4)  recursive relation
递推关系
1.
This paper presents a general method which may be used to work out a special solution of the real number coefficient linear nonhomogeneous recursive relation, where the nonhomogeneous term is cosω n or sinω n multiplying a real polynomial in n .
就非齐次项为cosωn 或 sinωn 与 n 的实多项式 Pl(n)乘积的实系数线性递推关系给出了求特解的一般方法。
2.
And the recursive relations for three partition numbers are got.
给出了计算其中三类分拆数的递推关系:一类为将n分拆成l个不同的分部(项),且分部量不超过正整数k的分拆数的递推关系;另一类为将n分拆成各分部量互不相同且分部量不超过k的分拆数的递推关系,进而给出了计算这类分拆数的一种计算方法;第三类为将正整数分拆成分部量不超过k且互不相同的奇偶分拆数的递推关系。
3.
In this paper,we gave the generating function and recursive relation for p_k(n,m),the number of the m-partition of n with k parts.
本文进一步给出了具有k个分部的n的m-分拆数pk(n,m)的生成函数以及它的一种递推关系。
5)  Recursion relations
递推关系
1.
The recursion relations of radial wave functions for the isotropic harmonic oscillator;
三维各向同性谐振子波函数的递推关系(英文)
2.
The approach of calculating the order n determinant which has constant coefficient recursion relations of order 2 or more than order 2 is given,with the recursion relations H_n=■α_iH_(n-i)(α_1,α_2,…,α_r are constants) in combinatorial mathematics.
给出了用组合数学中的递推关系H_n=■α_iH_(n-i)(其中α_1,α_2,…,α_r为常数)计算具有二阶及二阶以上常系数递推关系的n阶行列式的计算方法。
3.
In this paper,the general high order equal ratios sequence have been studied by generating functions and recursion relations.
本文利用母函数和递推关系求解一般高阶等比序列,得到了这类序列的一般解。
6)  recurrence relations
递推关系
1.
In order to simplify the calculation of the bound-continuous transition matrix elements in the case of the high power-orders,the recurrence relations of different power order transition matrix elements are derived.
为了简化高幂次的束缚连续跃迁矩阵元的计算,我们还推导出了不同幂次的束缚连续跃迁矩阵元之间所满足的递推关系,并提出了计算径向波函数微商的矩阵元的计算办法。
2.
Using Newton-Katorovih-type assumption,a convergent theorem for the family of iterations is established,and the result on the existence of a unique solution to the nonlinear equation is given by using a technique based on a new system of recurrence relations.
在Newton-Kantorovich型的假设条件下,通过用一个递推关系证明了此迭代族的三阶收敛性,并给出了非线性算子方程解的存在惟一性定理。
3.
Under the same Lipschitz conditon as for Newton s method,a convergent theorem for the family of iterations is established,and the result on the existence of a unique solution for the nonlinear equation by using a technique based on a new system of recurrence relations is given.
在与Newton法收敛相同的Lipschitz条件下,通过用一个递推关系证明了此迭代族的收敛,并给出了非线性算子方程解的存在惟一性定理。
补充资料:递推关系


递推关系
recurrence relation

  【补注】含有么元素的交换环R中的元素序列“。,::,二,满足线性递推关系。。二pl:。一:+”‘十p。,。_。(n)m)的充分必要条件是,形式幂级数武x)=:。+:,浑+…是一形如:(x)=夕(x)/g(x)的有理函数,甚中p(x)二l一plx一·一几。x“而q(x)是次数簇m一1的多项式.戚鸣皋译潘承彪校递推关系[reeurre理er山灯朋;PeKyPPe”T“oe cooT”o-。eH毗」,递推公式(reeurrence lbrm口a) 形如 a。十,,=F(n,a。,a。+!,.’‘,a。十,一)的关系式.使得当已知序列“,,“2,…的最初p项时,就可以算出它所有的项.递推关系的例子如:1)a,.+、=q·a。(q转0)‘—等比数gIJ(罗。服tric pro-『ession);2)a。十、=a。+d—等差数列(面让田忿-tic Progression);3)a。十:=a。十;+a。—月加.ed数(Fi比naCei nujmbers)序列. 在递推关系是线性的情况下(见递归序列(reeur-sives闪Llence”;描述满足已知递推关系的所有序列的集合的问题与解常系数齐次线性常微分方程的问题相类似.
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条