1) linear iteration relations
线性递推关系式
2) linear recurrence relation
线性递推关系
1.
As their application a general solution on linear recurrence relations is obtained.
对若当标准形及所使用的可逆矩阵的计算加以简化,并借助若当标准形给出线性递推关系式求解的一般方法。
2.
We consider the following a class of linear recurrence relation with constant coefficients having two indices u i,j =pm=11n=0(a m,n u i-m,j-n )+f(i,j) u k,0 =c k (k=0,1,…,p-1),u i,j =0(i<0 or j<0) where i,j≥0,p≥1,a m,n (m=1,2,…,p;n=0,1 ) and c k(k=0,1,…,p-1 ) are constants.
给出了一类带双指标的常系数线性递推关系的一般显式解。
3) recurrence relation
递推关系式
1.
In recurrence rela-tion that means recurrence relation formula is the solution of Dn,that is
给出一个用递推关系式计算n阶行列式的一个讨论,即递推关系式是 (pi ∈C,i=1,2,3)(n≥4)的情况下的的计算方法。
2.
In this paper,the construction of parametric rational circular arc spline is introduced briefly,the recurrence relation bet.
文章首先介绍参数有理圆弧样条的构造,并建立相邻两分段点切向量之间的递推关系式,然后再利用此关系式给出了此参数有理圆弧样条保形性的充要条件,为实际应用提供了理论依据。
3.
This paper generalizes the conclusion in paper 1,produces the general term of the recurrence relation an=g(n)an-k+f(n),and introduces its several applications in mathematics courses.
推广了文[1]的结论,得到了递推关系式an=g(n)an-k+f(n)的通项,并介绍了在数学课程中的一些简单应用。
5) linear recurrence formula
线性递推式
1.
By using Frobenius matrix, this paper presents the common solution in another form to linear recurrence formula with constant coefficients.
本文利用Frobenius矩阵的自乘特性给出常系数线性递推式一般解的一种形
6) linear recurrence
线性递推式
1.
In this paper we consider the following class of linear recurrence with variable coefficients with two indicesu i,j =f(i,j)u i-1,j-1 +g(i,j)u i-q,j-q +h(i,j), u i,0 =c i,0 ,u 0,j =c 0,j (i,j=0,1,…),u i,j =0(i<0 or j<0),where i,j=1,2,…,q≥2,f(i,j),g(i,j) and h(i,j) (i,j≥1) are variable numbers,c i,0 and c 0,j (i,j=0,1,…) are vrbitrary constants.
本文给出了两个指标的非常系数的线性递推式的显式解 。
2.
It is very difficult to get a clear formula solution of general linear recurrence,even for the case of homogeneous recurrence of constantcoefficients with one indicds.
根据代数方程的求解原理 ,利用传统的数学归纳方法 ,通过严密的推导得到了一类两个指标的非常系数线性递推式的显式解 ,从而为解决与之相关的定解问题 ,提供了一个统一、具体的计算公式 。
补充资料:递推关系
递推关系
recurrence relation
【补注】含有么元素的交换环R中的元素序列“。,::,二,满足线性递推关系。。二pl:。一:+”‘十p。,。_。(n)m)的充分必要条件是,形式幂级数武x)=:。+:,浑+…是一形如:(x)=夕(x)/g(x)的有理函数,甚中p(x)二l一plx一·一几。x“而q(x)是次数簇m一1的多项式.戚鸣皋译潘承彪校递推关系[reeurre理er山灯朋;PeKyPPe”T“oe cooT”o-。eH毗」,递推公式(reeurrence lbrm口a) 形如 a。十,,=F(n,a。,a。+!,.’‘,a。十,一)的关系式.使得当已知序列“,,“2,…的最初p项时,就可以算出它所有的项.递推关系的例子如:1)a,.+、=q·a。(q转0)‘—等比数gIJ(罗。服tric pro-『ession);2)a。十、=a。+d—等差数列(面让田忿-tic Progression);3)a。十:=a。十;+a。—月加.ed数(Fi比naCei nujmbers)序列. 在递推关系是线性的情况下(见递归序列(reeur-sives闪Llence”;描述满足已知递推关系的所有序列的集合的问题与解常系数齐次线性常微分方程的问题相类似.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条