说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 集值拟增算子
1)  set valued quasi increasing operators
集值拟增算子
1.
In this paper,we introduce the concept of pseudo low separable,using the method of works of Sun Jinxian,we prove some new fixed point theorems of set valued quasi increasing operators.
该文引进伪下可分概念,借助孙经先先生的论文“非线性泛函分析序集一般原理的推广”中的方法,得出集值拟增算子的新不动点定
2)  set valued increasing operators
集值增算子
1.
By introducing the concepts of the lower increasing,upperincreasing ,total increasing and strong increasing for set valued operators and the concepts of totally ordered quasi complete set and totally self complete set in semiordered set ,the existence of fixed point for the set valued increasing operators composed of a single valued operator and a set valued operator is discussed.
通过引入集值算子的下增、上增、全增、强增和半序集上的全序拟备集、全序自备集等概念,讨论了由单值算子与集值算子复合而成的集值增算子的不动点的存在性,改进和推广了已有文献的某些结
3)  set-valued accretive operator,multivalued accretive operator
集值增生算子
4)  quasiincreasing operator
拟增算子
1.
We obtain some simple results for setvalued quasiincreasing operator in the continuous functional space C(G).
该文研究了算子的可扩张性质和方程可解性问题,在连续函数空间C(G)上对于集值拟增算子得到了若干简单结果,并在随后简略地说明了该文结论的直观意义及可供进一步研究的一些问题。
5)  set-valued operators
集值算子
1.
In this paper,the existence of fixed points of a class of set-valued operators is studied and obtained,also the sequence convergent to the fixed point is given.
在Banach空间中研究了一类集值算子的不动点存在性,在不附加连续性条件下得到了不动点存在性结果,且给出了其不动点的迭代收敛序列。
2.
In this paper,some definitions of the mixed monotonicity for set-valued operators in semiordered set are introduced and relation of monotonicities are discussed.
给出了半序集上集值算子的几种混合单调性定义 ,讨论了它们之间的关系 。
6)  set-valued operator
集值算子
1.
The purpose of this thesis is to discuss the existence problems of the fixed points for set-valued operators and for single-valued operators in linear spaces.
本文主要讨论了算子的不动点的存在性问题,一是关于集值算子的,二是关于线性空间中的单值算子的。
补充资料:单值算子


单值算子
monodromy operator

单值算子〔m仪.山咖yo伴rator;MO“0皿poM”加onepa-TOP」 有界线性算子U(T),它将Banach空间中微分方程交=A(t)x(其中A(t)是依赖于t的有界算子,即连续的、且以T为周期的)的解的初值x(0)=x。与在时刻T的值相联系:x(T)=U(T)x。对于每一个解,x(t十T)=U(T)x(t).在有限维空间中,u(T)对应于单值矩阵(monod比myIT坦tr认).单值算子的谱的位置影响着方程周期解的存在时,无穷远处解的性态,此方程化为常系数方程的可约性,以及指数分叉的存在性,对于A(O和f(灼具有周期性的非齐次方程交=A(t)x十f(t),其周期解的存在和唯一性问题也借助于单值算子谱来解决 亦见B田.山空间中微分方程的定性理论(QI坦11-扭七ve theo习ofd正rerential闪Uations inBanachsPaces). C .F .KPe认H撰
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条