说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 预解集
1)  resolvent set
预解集
1.
For operator matrix(AX CB) defited on H K,the intersection of the resolvent set of MX is charecterized when X is taken all operator in B(H,K).
对定义在HK上的算子矩阵MX=[AXCB],当X取遍B(H,K)中算子时,给出了所有的预解集ρ(MX)之交集的刻画。
2)  C-resolvent set
C-预解集
3)  persolution
预解
1.
To utilize a few of matrix differential identities, in this paper, we establish the persolution and its derivative Sturm Comparability Theorem on two - order linear differential system(1 ) 1 and extend a number of classic results.
本文利用几个矩阵形式的微分恒等式,建立了关于二阶线性微分系统(1)的预解及其导函数的Sturm比较定理,推广了若于经典结论。
4)  downscaling
解集
1.
For further study on potential evapotranspiration downscaling,a model,which downscales the potential evaporation time step from monthly to daily,was established on the basis of modifying and improving the expectation-variance model.
针对目前研究蒸散发能力解集方面的不足,对联合期望-方差模型进行改进并进一步扩展,建立了将月蒸散发能力解集到日蒸散发能力的解集模型。
2.
A statistical downscaling approach,including a stochastic weather generator and a downscaling technique,is developed to transfer daily rainfall in general circulation model (GCM) grid to local area.
全球气候模式 (GCMs)预测的气候变化情景 ,必须经解集模式得出小尺度上未来气候变化时空分布资料 ,才能满足评估气候变化对资源、环境和社会经济等影响的需要 。
5)  solution set
解集
1.
Some Properties and Structure of the Solution Sets of ■-Fuzzy Relational Equations in Infinite Domains and on a Complete Completely Distributive Lattice;
论域无限时完备完全分配格上■-Fuzzy关系方程解集的一些性质和结构
2.
The structure and search procedure of solution sets of linear fractional programming in general form;
一般形式线性分式规划解集的结构与求法
3.
Some Solution Set of sup-inf Fuzzy Relational Equations on Finite Domains in Complete Brouwerian Lattice;
完备Brouwer格上有限sup-inf合成Fuzzy关系方程解集的一些性质
6)  solution sets
解集
1.
By means of the properties of pseudolinearity, the characterizations of the solution sets of pseudolinear programs are derived.
在此,主要考虑连续次可微的伪线性函数的性质,然后研究伪线性规划解集的性质。
2.
This paper mainly discusses the non-zero solution of non-linear symmetrical equation sets of S1=S2…=Sλ_1 = Sλ+1=…=Sn= Sn +1,(1≤λ≤n),(Sk= x1k+x2k+…xnk,k =0,1,2,…) and points out the structure of the solution sets.
主要讨论了非线性对称方程组S1=S2=…S2=…=Sλ-1=Sλ+1=…=Sn=Sn+1(1≤λ≤n),(Sk=x1k+x2k+…+xnk,k=0,1,2,…)的非零解,并指出其解集的结构。
补充资料:预解集


预解集
resolvent set

预解集[re刻v以喊;pe3o,‘“e盯Hoe M.o搜ecT.o」 满足以下条件的复数公的集合p(T),其中T是B赶幻日‘h空间中X的一个算子,对这种z存在X中有界且有稠定义域的算子R:二(T一:I)一’.预解集的补集是算子T的谱(见算子的谱(spectn卫n ofanoperator)).【补注】z‘C是在T的预解集中,如果T一21的值域是稠密的且T一21有一个连续的逆.此逆通常用R(鱿T)表示且它称为T(在z处)的预解式(resolvenl).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条