1) countable complementary space
可数补空间
1.
In this paper,we discuss some topological invariant property,including connectedness separation property,compactness and countalbility,in finite complementary space and countable complementary space.
本文讨论了有限补空间与可数补空间的连通性、分离性、紧性及可数性等拓扑不变性质。
2) countable complementary topological space
可数补拓扑空间
3) complemented subspace
可补子空间
1.
As pointed by the author, the sum of two complemented subspaces of Banach space X may not be complemented space of X ; however, when P and Q are all continuous linear projection operators on X and PQ are strictly singular operators, PX+QX are complemented.
指出Banach空间X的两个可补子空间之和未必再是X的可补子空间,但当P和Q都是X上连续线性投影算子且PQ是严格奇异算子时,PX+QX是可补的。
2.
A Banach space X with a unconditional basis {xn} is said to have the property P if, every bounded block basis sequence of {xn} spans a complemented subspace of X.
称一个带无条件基{xn}的Banach空间有性质P,如果{xn}的每一有界块基序列都张成X的可补子空间。
4) topologically complemented subspace
拓扑可补子空间
5) ωLindelf spaces
ωLindelf可数空间
6) gf-countable space
gf可数空间
补充资料:可数赋范空间
可数赋范空间
oountabiy-oormed space
可数斌范空间「。晚.扭街一~曰月班理;创曰旧侧明州阅,-.砚旧。旧即以汀脚川。BOI 由担夸苹攀(“〕m脚tlble noITns,}}。卜、,…,{,{{。,…的可数集来定义其拓扑的局部凸空间,这里!*}},与!{*!}、相容是指如果序列{戈}CX是按这两个范数的基本序列,且按其中一个范数趋于零,那么它也按另一个范数趋于零.范数序列{}}*{一}可由非减范数序列(即当p
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条