说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 系数环同态
1)  coefficient ring's homomorphism
系数环同态
2)  homorphic system
同态系态
3)  ring homomorphism
环同态
1.
Motivated by the stability of ring homomorphisms,the ε-Hyers-Ulam stability of operator equations are introduced.
根据环同态的稳定性,引入了算子方程Ax=0的ε-Hyers-Ulam稳定性的概念。
4)  endomorphism ring
自同态环
1.
We study their properties and endomorphism rings, and obtain some properties of the Jacobson radical of such rings.
我们讨论了伪内射模与主伪内射模的性质及其自同态环,并得到了自同态环的Jacobson根的若干性质。
2.
Finally, the endomorphism ring of radical-projective modules is discussed.
本文给出了根投射模的一些等价刻划,例如,证明了一个根投射模是投射模的充要条件是它有投射覆盖;并利用根投射模得到了遗传环的一个特征性质;最后对根投射模的自同态环进行了讨论。
5)  homomorphism ring
同态环
6)  homomorphism of semiring
半环同态
1.
This paper introduces the concept of semirings,homomorphism of semirings and congruence simple semirings,discusses the relation between two semirings.
本文在引入半环概念的基础上,介绍半环同态、同余关系、单同余半环等概念,讨论两个同态半环之间单同余性质的关系。
补充资料:自同态环


自同态环
endomoqMsn ring

群A的自同态环中有一个忠实的表示.再者,若K有单位元,则A可选成K的加法群,使K的元素一由左乘而作用于此群上.若K没有草位元)而天:是由K另外加一个单位元所得的环,则A可取为Kl的加法群. 在一个Abel簇X的情况,除了环FndX以外(它是一个有限生成的Z模)人们还将考虑自同态代数(algebmofendolr幻rphalns)(复数乘法的代数(司罗bra of complexm山tiplicatiol签))End‘,X=Q⑧:En(IX.自同态环【.曲扣期咖白n垃唱;,期。M叩中哪佣“.‘月。] 由A到其自身的所有态射所组成的结合环EndA=Hom(A,A),这里的A是某一加性范畴(目ditiVe口t雌夕ry)中的一个对象.EndA中的乘法就是态射的合成,而加法则是态射的加法,它们都是由加性范畴的公理系所定义的.恒等态射1,是环EndA的单位元.EndA中的一个元素中是可逆的,当且仅当价是对象A的一个自同构.如果A与B都是一个加性范畴C中的对象,那么群Hom(A,B)就有EndA上的右模的自然结构,而且有EndB上的左模的自然结构.设T:C~C:是从一个加性范畴C到一个加性范畴Cl的一个共变(或反变)加性函子.那么,对于C中的任一个对象A,函子T就引出一个自然同态(或反同态)EndA~EndT(A). 设C是环R上的模范畴.对于一个R模A,环EndA是由Abel群A的自同构中那些可与R的元素乘法可交换的所有自同构所组成的.两个自同态毋与必之和是由公式 (职+价)(a)=职(a)+必(a),a 6A来定义的.如果R是可交换的,则EndA就有一个R代数的自然结构.模A的许多性质都可由EndA来刻画.例如,A是一个不可约模,当且仅当EndA是一个可除环. 一个结合环K到EndA内的任意的一个同态二称为可K的衣示(rePn芝七ntation of thenng)(由对象A的自同态).如果K有单位元,那么就需要再加一个条件二(1)二1,.任何结合环K都在某一个Abel
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条