1) or-bital plane
轨道平面方程
2) orbit plane
轨道平面
1.
Swing equation of a shaft-shaped synchronous satellite is based on Lagrange s equation,and the formula of the swinging period is gained that the satellite s swing plan and orbit plane form random angle,whose result is more universal.
用拉格朗日方程建立杆状同步卫星的摆动方程,得出卫星摆动平面与轨道平面成任意角时的摆动周期公式,其结果更具有普遍性。
3) orbital equation
轨道方程
1.
The conservation tensor and orbital equation of the isotropic three-dimensional harmonic oscillator;
三维各向同性谐振子的守恒张量及其轨道方程
2.
Based on the Schwarzs Child Gauge, the moving orbital equation of the planets round the sun is derived, from directly finding the solution of the three geodefic equations relevant to r, φ and t.
根据施瓦茨希德度规 ,直接求解关于r,φ ,t的三个短程线方程 ,导出行星绕太阳运动的轨道方程。
3.
In this paper,we give the orbital equations of a classical particle in coulomb poten tial and isotropic oscillate potential and their screened potentials are given.
计算了经典粒子在库仑势场、球谐振子势场及其屏蔽势场中的运动轨道方
4) orbit equation
轨道方程
1.
The equation can be used to get the orbit equation easily.
并将其应用于有心力问题及抛体问题 ,导出了有心力问题的轨道微分方程Binet公式及抛体轨道方程。
2.
The motion of charged particle acted upon by Lorentz force and other external force are analyzed,calculating formulae of orbit equation and curvature radius are derived.
分析了带电粒子受到洛伦兹力和其他恒定外力作用下的运动情况,导出了轨道方程和曲率半径的计算公式。
5) plane equation
平面方程
1.
The author establishes the molecular helix plane equation in leptospira model in order to figure out dihedral angle to instead of torsion angle of X-ray diffraction structure test, and explains the common applying circumstances of dihedral angle.
本文利用数学推导的方法 ,在螺旋体模型中建立分子中的螺旋平面方程以求出二面角来代替 X-衍射结构测试中的扭转角 ,并对二面角的一般应用情况给予了说
2.
By plane equation,the proposition that the indices of lattice planes must have no common factor is proved.
通过平面方程证明了晶面指数必无公因子。
6) plane equations
平面方程
1.
The paper lists five types of solutions to some particular plane equations,expounding the impertant function of solutions to problems in teaching.
列举了一类特殊平面方程的五种解法 ,并分别阐明和强调各种解法在教学中的重要作用。
补充资料:轨道平面
飞行器运行轨道所在的平面。在实际天体的引力场作用下,由于天体质量分布不均匀、形状不规则和其他天体的引力摄动,轨道不是平面曲线,且作缓慢旋转,即交点进动。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条