说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Poisson定理
1)  Poisson thorem
Poisson定理
2)  generalized Poisson theorem
广义Poisson定理
1.
The generalized Poisson condition for the first integral and the generalized Poisson theorem of the generalized Birkhoff systems are obtained.
利用Lie代数和Poisson括号建立广义Birkhoff系统的Poisson定理 ,得到广义Birkhoff系统关于第一积分的广义Poisson条件 ,提出了广义Poisson定理 ,并举例说明结果的应
3)  Poisson-stable point
Poisson稳定点
1.
It is proved that Poisson-stable points are dense in the locally compact phase space X if and only if non-wandering points are dense in the X.
证明了如果相空间X局部紧,则Poisson稳定点在X中稠与非游荡点在X中稠等价。
4)  Poisson theory
Poisson理论
1.
The integrals of the equations can be obtained by using the Noether theory and the Poisson theory.
研究用Noether理论和Poisson理论求其积分。
5)  Poisson stability
Poisson稳定运动
1.
The main purpose of this paper is to discuss the relationship between Poisson stability and Lyapunov stability in dynamical systems and their properties,and to get some results of Poisson stability which in some extent generalizes the results of reference[3].
讨论动力系统中Poisson稳定运动及Lyapunov稳定性的性质及它们之间的关系,得到有关Posison稳定运动的结果,在一定程度上推广了文献[3]的结论。
6)  Poisson limit law
Poisson极限定律
补充资料:函数逼近,正定理和逆定理


函数逼近,正定理和逆定理
approximation of functions, direct and inverse theorems

  函数逼近,正定理和逆定理〔叩p川心m丽皿of加n比拙,山比Ct and inve瑰the.陀ms;.聊痴叫的日.此中加.欲浦、娜旧M“el.倾阵I‘eT印碑袖I」 描述被逼近函数的差分微分性质与各种方法产生的逼近误差量(及其特征)之间关系的定理和不等式.正定理借助于函数f的光滑性质(具有给定的各阶导数,f或其某些导数的连续模等),给出f的逼近误差估计.利用多项式进行最佳逼近时,Jaekson型定理及其多种推广均是众所周知的正定理,见J以滋s佣不等式(J ackson inequality)和Ja改涨扣定理(Jackson theo-化m).逆定理则是根据最佳逼近或任何其他类型逼近的误差趋于零的速度来刻画函数的微分差分性质.5.N.Bernste几首次提出并在某些场合下解决了函数逼近中的逆定理问题,见[21,比较正逆定理,有时就可以利用,例如,最佳逼近序列来完全刻画具有某种光滑性质的函数类. 周期情形下正逆定理之间的关系最为明显.令C为整个实轴上周期为2二的连续函数空间,其范数定义为}}训:m。‘加川. 趁、 石(户7丁),nf}{厂甲1}、 价任了。为至多。次的允多项J处J’‘“间l对矛中函数f的最不}遍近,。仃一川记二厂的连续模,产r(产一12一)是若;,,I率个实轴上·次连续。f微的函数集‘户,二矛);卜定理f山。‘c、,the(〕re,1”J片出如果.了。厂、则 M{_‘l 从“,,蕊奋一“甲’、万 月l、2、、厂幼,!_.少川1常数M,。。一。又.「JJ以构造矛。‘;矛中函数八,)相关的多项式序列织(_人t):不使得对产三乙,(l)的右端.叮作为误差卜厂一仁〔户一的}界,这是较(I)更强的结果.1兰定理(,n、。r、。the‘)rem)指日:对,。矛勿J果 可。,、M了岁E“,;;),。、二 月二】(其,「,阿是绝对常数l}了司是l厂户的整数部分)日一对某个i「一整数r‘级数 艺。r一’E以讯一1) 月二1收敛.则可推得了‘〔’‘类似戈2)田(/、),l/。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条