1) three_dimensional parabolic equation
三维抛物型方程
1.
In this paper, a new three_level explicit difference scheme with high accuracy is proposed for solving three_dimensional parabolic equations.
本文构造了一个解三维抛物型方程的高精度三层显式差分格式,其稳定性条件为r=Δt/Δx2=Δt/Δy2=Δt/Δz2≤1/4,截断误差为O(Δt2+Δx4)
2) parabolic partial differential equation of threedimension
三维抛物型微分方程
4) one-dimensional parabolic equation
一维抛物型方程
1.
A high accurate semi-explicit difference method for the one-dimensional parabolic equation;
求解一维抛物型方程的一种高精度半显式差分方法
2.
One implicit differencing scheme of three level and seven points for solving the one-dimensional parabolic equations is presented in this paper,by using the method of combinatorial difference quotient.
用组合差商法对一维抛物型方程构造了一个两层七点差分隐格式,使得精度达到O(2τ+h4),稳定性条件为0≤r≤1/3。
5) one-dimension parabolic equation
一维抛物型方程
1.
One class of high accuracy explicit difference schemes of three layers and seven points for solving one-dimension parabolic equations are presented by the undetermined parameters method,its truncation error is O(τ3+h6),the stability condition isO<r4/5.
利用待定系数法对一维抛物型方程构造了一类高精度的三层七点显式差分格式,格式的截断误差达到O(τ3+h6),稳定性条件是0
2.
One implicit difference scheme for solving one-dimension parabolic equations is presented in this paper.
本文用组合差商法在乘积型差商空间中对一维抛物型方程初边值问题构造了一个绝对稳定的隐式差分格式,格式的截断误差阶为O(τ2+h4)。
6) three-dimension parabolic equation
3维抛物型方程
补充资料:抛物型偏微分方程
抛物型偏微分方程 parabolic type,partial differential equation of 偏微分方程的一类。最典型的是热传导方程 (a>0) (1)基本解是点热源的影响函数。若在t=0时在(ξ,η,ζ)处给定单位点热源,即u0(x0,y0,z0,0)=δ(ξ,η,ζ)(δ为狄拉克函数),则当t>0时便引起在R3的温度分布,这就是基本解。用傅里叶变换可得到它的表达式 热传导方程初值问题的解可用基本解叠加而成,即的解为 极值原理:一个内部有热源的传导过程,它的最低温度一定在边界上或初始时刻达到。更强的结论是 :如果t=T时在Ω内某一点达到最低温度 ,则在这个时刻以前(t<T时)u≡常数 ;又:若最低温度在t=T时边界¶Ω上某点P达到,则在这点上|P,Τ<0(n为外法线方向)。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条