1) maxmal prime subgroup
极大素子群
1.
This paper discusses the property of maxmal prime subgroups of a lattice ordered groups and the structure of some classes decided by the root system of prime subgroups.
研究了格序群的极大素子群的性质以及由素子群根系确定的几种格序群类的结构。
2) maximal subgroup
极大子群
1.
A type of maximal subgroups of special orthogonal groups over local rings;
局部环上特殊正交群的一类极大子群
2.
Classification of finite groups whose maximal subgroups are Dedekind groups.;
极大子群均为Dedekind群的群
3.
Characterization of Sporadic Simple Groups with the Orders of Groups and the Sets of Indexes of Maximal Subgroups;
用阶和极大子群指数之集刻划散在单群
3) maximal subgroups
极大子群
1.
On the Intersection of Two Special Maximal Subgroups;
两类特殊的极大子群的交
2.
On the s-θ-completions of maximal subgroups and the π-solvability of a finite group
有限群极大子群的s-θ-完备与π-可解性
3.
Studied the solvabilty of finite group by the theta pairs of only one special maximal subgroups,obtained a series of new results about the solvability of finite group.
主要研究有限群的某一类特殊的极大子群,并且考察这类极大子群的θ-子群偶对该有限群结构的影响,从而得出有限群可解的几个充分条件。
4) Minimal prime subgroup
极小素子群
1.
On the basis of the previous research result,a structure N=a~⊥of minimal prime subgroups for some spe- cial classes of l-groups is establisned in this artcle.
在l-群的极小子群研究的基础上就某些特殊类的l-群建立了极小素子群的一种结构N=a~⊥。
5) n-maximal subgroups
n-极大子群
1.
Finite groups some of whose n-maximal subgroups are conjugate-permutable;
n-极大子群为共轭可换的有限群
2.
The effect of n-maximal subgroups on the structures of the finite groups whose n-maximal subgroups were subnormal was studied.
研究了有限群G的n-极大子群均在G中次正规时对群G结构的影响,得到群G可解的若干充分条件和群G的一些性质,推广了文献[1,4]的主要结果。
6) maximal subsemigroup
极大子半群
1.
For n≥3,we obtained the structure of the maximal subsemigroups of L-classes and R-classes on D-classes Dr(2≤r≤n-1) of finite full transformation semigroup,and showed that these maximal subsemigroups are also the maximal subsemigroups of Dr.
主要讨论了全变换半群Tn的D-类Dr上的R-类,L-类的极大子半群结构,并且证明了这些极大子半群也是Dr的极大子半群。
补充资料:极大紧子群
极大紧子群
maximal compact subgroup
极大紧子群[叮.油般】c伽声Ct,纯r叨p;M毗,M幼I,H明KOMn毗“a,n叭印ynna」,拓扑群G的 一个紧子群(见紧群(comPact grouP))K CG,它不作为真子群被包含在G的任何紧子群内.例如,尤二50(n)对于G=SL(n,R),K二{e}对于一个可解单连通Lie群G. 在任意群G里,极大紧子群不一定存在(例如,G“CL(V),V是一个无限维Hilbert空间),而一且即使存在,它们之间也可能有不同构的. Lie群的极大紧子群已被广泛地研究.如果G是一个连通Lie群,那么G的任意紧子群都被包含在某个极大紧子群内(特别,极大紧子群一定存在),并且G的一切极大紧子群都是连通的且彼此共扼.群G的空间微分同胚于KxR”.因此,很多关于Lie群的拓扑问题都归结为紧玩群(Lie gro叩,com-pact)相应的问题.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条