说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 定权公式
1)  weighting formula
定权公式
2)  option pricing
期权定价公式
3)  option pricing formula
期权定价公式
1.
In this paper,it is discussed the Europe option pricing formula,and provides a simple method of deriving Black-Scholes option pricing formula that enable those readers only with calculus knowledge to understand.
首先给出一个B-S期权定价公式的简化方法,使具有一般微积分知识的读者就能理解;并假定股票价格过程遵循带Poisson跳的扩散过程,在股票预期收益率、波动率和无风险利率均为时间函数的情况下,得到欧式期权定价公式和买权与卖权之间的平价关系。
2.
It is discussed the Europe option pricing formula, under the assumptions that stocks prices process driven by Poisson jump-diffusion process, and the expected rate μ,volatility σ and risk-less rate are functions of time, we obtain the pricing formula and put-call parity of European option.
文章主要讨论欧式期权的定价公式,假定股票价格过程遵循带Poisson跳的扩散过程,在股票预期收益率、波动率和无风险利率均为时间函数的情况下,得到欧式期权定价公式和买权与卖权之间的平价关系。
3.
In the integral formula of Fourier transforms of option pricing formula,by using residues theorem two integrations were simplified into a single numerical integration which has a faster rate of decay.
在期权定价公式的傅立叶变换积分公式中,运用留数定理将公式中的两个积分式子化简成一个被积函数衰减较快的积分函数式,从理论上提高了计算效率,缩短了计算时间,为投资者快速计算期权价值节约了时间。
4)  Black-Scholes option pricing formulate
BlackScholes期权定价公式
5)  BSM option pricing formula
BSM期权定价公式
6)  Black-Scholes option pricing formula
Black-Scholes期权定价公式
1.
Based on the principle of control variables method,this paper adopts CV-CRR method of the American option on the basis of Black-Scholes option pricing formula,and it also makes an empirical analysis to prove that the control variables method can be used to greatly improve the operating speed and valuation precision of the standard binary tree method,thus improve the effciency of valuation.
本文基于控制变量法原理,在Black-Scholes期权定价公式的基础上,采用CV-CRR方法为美式看跌期权定价。
2.
The derivation of Black-Scholes option pricing formula is very complicated,and it needs some advanced mathematical knowledge such as stochastic process,stochastic differential equation.
Black-scholes期权定价公式的推导过程相当复杂,需要用到随机过程和求解随机微分方程等较高深的数学工具,本文将在风险中性的假设下给出两种Black-scholes期权定价公式的简洁推导方法,使得具有概率统计和微积分基本知识的读者也能理解并欣赏这一公式的导出过程。
补充资料:因侵害姓名权、肖像权、名誉权、荣誉权产生的索赔权
因侵害姓名权、肖像权、名誉权、荣誉权产生的索赔权:公民、法人的姓名权、名称权,名誉权、荣誉权、受到侵害的有权要求停止侵害,恢复名誉,消除影响,赔礼道歉,并可以要求赔偿损失。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条