1) positive definite homogeneous function of degree k
正定k次型
2) positive definite quadratic form
正定二次型
1.
A non-equality and its proof based on positive definite quadratic form;
基于正定二次型的一个不等式及其证明
2.
The paper is mainly about two opposite questions on quadratic form:one is the opposite question on its standard form,the other is the opposite question on positive definite quadratic form and has been given the solution to each other.
本文着重讨论了关于二次型的两个反问题 ,一个是二次型的标准形的反问题 ,另一个是正定二次型的反问题 ,并分别给出求解方法。
3.
The conditions of equivalence of positive definite quadratic form are given ac-cording to its definition and some properties of positive definite matrix are given too in thepaper.
本文根据正定二次型的定义给出了它的几个等价条件;并且通过对正定矩阵的考察,给出了正定矩阵的若干性质。
3) basic positive definite quadratic form
基本正定二次型
1.
In this paper,We give concepts of positive definite matrix basis and orthogonal matrix basis,and show that every real quadric form can be lineally expressed by basic positive definite quadratic form; every linear transformation in Euclidean space can be lineally expressed by basic orthogonal transformation.
给出了正定矩阵基与正交矩阵基 ;证明了每个实二次型都可由基本正定二次型唯一线性表出 ,以及欧氏空间上的每个线性变换都可由基本正交变换唯一线性表
4) positive semidefinite quadratic
半正定二次型
1.
The conditions of positive semidefinite quadratic form are given according to its definition,and some properties of postive semidefinite matrix are given according to its definition in the paper.
从半正定二次型的定义出发 ,推导出与其定义等价的几个条件 ;并且根据半正定矩阵的定义 ,推导出半正定矩阵的若干性
5) K-positive definite operator
K-正定算子
1.
The paper studies the iterative approximation problem of solutions for K-positive definite operator equations in arbitrary Banach space.
研究了在任意Banach空间中,K-正定算子方程的解的迭代问题,所用迭代方法是新的,且所得结果推广和改进了现有文献的相关结果。
2.
Let X be an arbitrary Banach space with a dual X and let A:D(A)X→X* be a K-positive definite operator with D(A)=D(K).
设X为任意Banach空间,X*为其共轭空间,A:D(A)X→X*为可闭的K-正定算子,D(A)=D(K),则存在常数α>0使得x∈D(A),有‖Ax‖≤α‖Kx‖,而且A为闭算子,R(A)=X*,f∈X*,方程Ax=f有唯一解。
3.
Let X be a uniformly smooth Banach space and let A:D(A) X→X be a K-positive definite operator with D(A) = D(K) .
设X为一致光滑Banach空间,A:D(A) X→X为K-正定算子满足D(A)=D(K),则存在常数β>0使得 x∈D(A),||Ax||≤β||Kx||而且 f∈X,方程∧x=f有唯一解;设{an}n≥0为[0,1]中的实数列满足(i)an→0(n→∞),(ii)sum from n=0 to ∞ an=∞, x0∈D(A),迭代地定义序列{xn}n≥0如下:则{xn}n≥0强收敛于方程Ax=f的唯一解。
6) K model revision
修正K模型
补充资料:输出反馈(见线性二次型次优控制)
输出反馈(见线性二次型次优控制)
output feedback
3h日c卜口fon以以{输出反馈型次优控制。(output王eedbaek)见线性二次
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条