说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 球面分数次积分
1)  spherical fractional integral
球面分数次积分
1.
This paper investigates the Zygmund property of spherical fractional integral on the sphere.
讨论了球面分数次积分的Zygmund性质。
2)  fractional integration operator on sphere
球面分数次积分算子
3)  Spherical fractional integral of variable order
球面上的变阶分数次积分
4)  spherical numerical integral
球面数值积分
1.
If the condition of uniform distribution on the sphere is ignored,a general expression of the spherical numerical integral formula based on the irregular distribution of N points on a sphere is introduced,and some spherical numerical integral formulas,which are based upon different division approaches on a sphere,are unified.
基于球面上N个点的Thomson均匀分布,提出了一种新的球面数值积分方法,并推导出相应的数值积分公式。
5)  spherical integral
球面积分
6)  fractional integral
分数次积分
1.
Boundedness of fractional integral operators associated to the sections for non-doubling measures;
非二倍测度下截口上的分数次积分算子的有界性
2.
Riesz potential is an important operator in harmonic analysis,and fractional integral with a homogeneous kernel or a coarse kernel is a lively field arising from researches on Riesz potential.
Riesz位势是调和分析中的重要算子 ,具有齐性核或粗糙核的分数次积分 ,是围绕Riesz位势发展起来的一个非常活跃的课题 。
3.
In this paper we discuss the properties of two kinds of integral operator with variable kernel and prove that fractional integral operator with variable kernel TΩ,μ is bounded from Bp,λ1(Rn).
主要讨论两类带变量核的积分算子的性质,证明了带变量核的分数次积分算子TΩ,μ是从Bp,λ1(Rn)到Bq,λ2(Rn)上的有界算子,其交换子TbΩ,μ是从Bp,λ1(Rn)到Bq,λ2(Rn)上的有界算子。
补充资料:分数阶积分与微分


分数阶积分与微分
og fractional integration and differentia-

分数阶积分的逆运算称为分数阶微分:若几介F,则f为F的:阶分数阶导数(na ctional deriVative).若0<戊0: ;、一上一f一工鱼一一添 r回几恤一t)’-(对f给予适当的限制;见!IL那里还包含算子人关于乌的估计). 下列定义(H.研几yl,1917)对可积的具有2二周期并在周期上具零均值的函数是方便的.设 f(x,一{采0cn“‘”’一艺‘、“‘”’,则f的以:>0)阶叭几贝积分(W亡ylintegl司)用式 ,,eC才月x 了_IX】~Z—!乙l 气!n)-定义;并且斑吞>0)阶导数尸用方程 d” fp(x)“~子二天一,(x) v一了dx”护”一户v,定义,这里n是大于刀的最小整数(应注意天(x)与几f(x)重合). 这些定义在广义函数论的框架中有进一步的发展.对周期的广义函数 f一艺‘毕切·分数阶积分灯=人的运算可据式(2)对一切实值:实现(若仪为负的,人f与“阶偏导数一致)且有关于参数“的半群性质. 在n维空间X中分数阶积分运算的类似式为R免业位势(Riesz potential;或俘挚掣积分恤把脚!of poten-tjal tyPe)) 。,,、,_.。r((n一“、/2、rf(x、 八_I《Xl二兀一t‘今-二一二言~一二二一‘二.--~‘‘戈二‘~dt T’t以j乙)竺}X一艺r” ‘、,,X凡的逆运算称为“阶Riesz导数(Riesz derivati记).分数阶积分与微分l云.西加目如吻阳‘刃翻日由场,曰血-肠即;八p浦姗。HT即.脚.翻.比。月.中中epe。朋.碑旧曰皿e],亦称分数次积分与微分 积分与微分运算到分数阶情形的推广,设f为区间[a,bl上可积函数,并设I汀(x)为f在la,x]上的积分,而嵘f(x)为此_、f(x)在ta,xl上的积分.,=2,3,…,那么有 ,。子‘。=~二一亡‘一犷,r‘八月,。、Y、、门、 卫_1 IX,一—1 IX一f,I吸tl“不.“浇无受D,111 IL“)了其中r间‘恤一I)!为r函数(手mi刀以丘山ctlon).上式右边对每个戊>0都有意义.等式(l)定义了f以a为始点的:阶分数阶积分(n习ctionalin噢州)或RI曰m以nn-Liou喇沮e积分(R~一Liou祖le int叩户1).对于复值参数:,算子叮被B.R记n艾Ir田(l时7)研究过,算子I:是线性的且有半群性质: 程「瑙(x)]二I:+,f(x).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条