1) spherical fractional integral
球面分数次积分
1.
This paper investigates the Zygmund property of spherical fractional integral on the sphere.
讨论了球面分数次积分的Zygmund性质。
3) Spherical fractional integral of variable order
球面上的变阶分数次积分
4) spherical numerical integral
球面数值积分
1.
If the condition of uniform distribution on the sphere is ignored,a general expression of the spherical numerical integral formula based on the irregular distribution of N points on a sphere is introduced,and some spherical numerical integral formulas,which are based upon different division approaches on a sphere,are unified.
基于球面上N个点的Thomson均匀分布,提出了一种新的球面数值积分方法,并推导出相应的数值积分公式。
5) spherical integral
球面积分
6) fractional integral
分数次积分
1.
Boundedness of fractional integral operators associated to the sections for non-doubling measures;
非二倍测度下截口上的分数次积分算子的有界性
2.
Riesz potential is an important operator in harmonic analysis,and fractional integral with a homogeneous kernel or a coarse kernel is a lively field arising from researches on Riesz potential.
Riesz位势是调和分析中的重要算子 ,具有齐性核或粗糙核的分数次积分 ,是围绕Riesz位势发展起来的一个非常活跃的课题 。
3.
In this paper we discuss the properties of two kinds of integral operator with variable kernel and prove that fractional integral operator with variable kernel TΩ,μ is bounded from Bp,λ1(Rn).
主要讨论两类带变量核的积分算子的性质,证明了带变量核的分数次积分算子TΩ,μ是从Bp,λ1(Rn)到Bq,λ2(Rn)上的有界算子,其交换子TbΩ,μ是从Bp,λ1(Rn)到Bq,λ2(Rn)上的有界算子。
补充资料:分数阶积分与微分
分数阶积分与微分
og fractional integration and differentia-
分数阶积分的逆运算称为分数阶微分:若几介F,则f为F的:阶分数阶导数(na ctional deriVative).若0<戊
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条