1) Tempered spline interpolation
缓增样条插值
2) tempered spline
缓增样条
1.
It is proved that if f∈PW π , then ‖s (k) 2m f-f (k) ‖ L p(R) →0 as m→∞,2<p≤∞,k=1,2,…, where PW π denotes the classical Paley Wiener class, s 2m f is the unique tempered spline of degree 2m-1 interpolating to f at real Riesz basis sequence.
证明了当 f∈PWπ时 ,‖s(k)2mf - f(k) ‖ Lp(R) → 0 (m→∞ ,2≤p≤∞ ,k =0 ,1,2 ,… ) ,其中PWπ是经典的Paley Wiener类 ,s2mf是在实Riesz基序列上对 f插值的唯一确定 2m - 1次缓增样条 。
3) spline interpolation
样条插值
1.
Analyzing the diode detecting characteristic by using spline interpolation technique;
应用自然样条插值技术分析二极管检波特性
2.
The application of spline interpolation to motion simulation;
样条插值在运动模拟中的应用
3.
Analysis of spline interpolation in boundary element numerical calculation;
边界元数值计算中样条插值函数特征分析
4) interpolation spline
插值样条
1.
A class of C1 continuous algebraic trigonometric blending interpolation spline curves is constructed based on the definition of free form algebraic trigonometric blending base functions.
文中通过一类代数三角混合样条基函数的定义,构造了C1连续的代数三角混合插值样条曲线。
2.
The worst case identification error upper bound is analyzed, and an explict error upper bound is obtained when the Lidstone interpolation spline and triangular window are used.
分析了相应的最差情况的辨识误差 ,并给出了采用 L idstone插值样条算子和三角窗函数时显式最差情况辨识误差上界。
5) Interpolating spline
插值样条
1.
This paper presents a method for the graphical representation of curved,fitting of data with cubic polynomial local area interpolating splines, and deal with existence, uniqueness, approximation degree of the fitting.
给出了曲线的一种困示方法,即用三次多项式局域插值样条来拟合原始数据。
6) Derivative-convolution
样条插值法
1.
Method of Discrete Data Serialization and Derivative-convolution for Step Voltammetry Ⅰ.Spline Interpolation;
阶跃伏安法离散数据连续化及导数卷积的方法 Ⅰ.样条插值法
补充资料:插值样条
插值样条
interpolation spline
插值样条【jllte月草l肠‘叨印垃祀;“。Tep“0朋“Ito”H从.c。月a-介H」 在给定的相异点{又}上与一已知函数取值相同的样条 月一! s。(△。;、)二马,+。,x+一+a。_!、’一’十艺C*(二一x*)笠, k思0其中:,,尧n 一十l戈。<’“<天 、U,t
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条