1) C spline interpolation
C样条插值
2) spline interpolation
样条插值
1.
Analyzing the diode detecting characteristic by using spline interpolation technique;
应用自然样条插值技术分析二极管检波特性
2.
The application of spline interpolation to motion simulation;
样条插值在运动模拟中的应用
3.
Analysis of spline interpolation in boundary element numerical calculation;
边界元数值计算中样条插值函数特征分析
3) interpolation spline
插值样条
1.
A class of C1 continuous algebraic trigonometric blending interpolation spline curves is constructed based on the definition of free form algebraic trigonometric blending base functions.
文中通过一类代数三角混合样条基函数的定义,构造了C1连续的代数三角混合插值样条曲线。
2.
The worst case identification error upper bound is analyzed, and an explict error upper bound is obtained when the Lidstone interpolation spline and triangular window are used.
分析了相应的最差情况的辨识误差 ,并给出了采用 L idstone插值样条算子和三角窗函数时显式最差情况辨识误差上界。
4) Interpolating spline
插值样条
1.
This paper presents a method for the graphical representation of curved,fitting of data with cubic polynomial local area interpolating splines, and deal with existence, uniqueness, approximation degree of the fitting.
给出了曲线的一种困示方法,即用三次多项式局域插值样条来拟合原始数据。
5) Derivative-convolution
样条插值法
1.
Method of Discrete Data Serialization and Derivative-convolution for Step Voltammetry Ⅰ.Spline Interpolation;
阶跃伏安法离散数据连续化及导数卷积的方法 Ⅰ.样条插值法
6) B-spline interpolation
B-样条插值
1.
In order to realize high-quality edge detection for the image,this paper introduces a new approach for edge detection based on B-spline interpolation.
为了能高质量地进行图像边缘检测,提出了一种新的基于B-样条插值的边缘检测方法。
2.
In order to ensure high quality of the rotated image, the cubic B-spline interpolation to calculate th e gray of pixels of the rotated image is adopted.
提出一种基于无限脉冲响应和有限脉冲响应数字滤波技术的快速 B-样条插值法 ,并将其应用于实时图像旋转处理中。
3.
In this paper, a new numerical model is proposed based on B-spline interpolation for transient of interconnects.
本文基于 B-样条插值提出了一种分析高速互连线瞬态响应的新的数值模型。
补充资料:三次样条插值法
分子式:
CAS号:
性质:样条函数中最重要的一种函数。若函数S(x)在区间[a,b]的每一分段[xi-1,xi](i=s,2,…n)上是三次多项式,而整条曲线及其斜率是连续的,便称它是定义在区间[a,b]上的三次样条函数(cubic spline function)。利用拟合的多项式计算函数值,将计算的函数值插入到原有的实验点之间,然后再根据所有实验点拟合成曲线。用三次样条插值法获得的曲线具有很高的精度。
CAS号:
性质:样条函数中最重要的一种函数。若函数S(x)在区间[a,b]的每一分段[xi-1,xi](i=s,2,…n)上是三次多项式,而整条曲线及其斜率是连续的,便称它是定义在区间[a,b]上的三次样条函数(cubic spline function)。利用拟合的多项式计算函数值,将计算的函数值插入到原有的实验点之间,然后再根据所有实验点拟合成曲线。用三次样条插值法获得的曲线具有很高的精度。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条