说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 非线性脉冲展宽
1)  nonlinear pulse spreading
非线性脉冲展宽
2)  Pulse-expanding
脉冲展宽
1.
The Application of Pulse-expanding Circuit Based on the FPGA;
FPGA在脉冲展宽电路设计中的应用
2.
The designing and implementation of monostable pulse-expanding circuit based on FPGA device;
基于FPGA的单稳态脉冲展宽电路的设计与实现
3)  pulse expanding
脉冲展宽
1.
Manufacture of chromatic dispersion impulse expanding analytic device in optical fiber;
光纤色散脉冲展宽分析仪的研制
2.
The basic theory of chromatic dispersion in optical fibers is discussed and the pulse expanding is analyzed on emphasis.
针对光纤色散特性会引起传输信号的畸变,限制通信容量,指出对光纤色散参数、光信号在长距离传输后脉冲展宽程度的准确测量,可以提供可靠的设计数据来源,在实际的工程应用中有着重要意义。
4)  pulse stretching
脉冲展宽
1.
Identifing target with pulse stretching characteristic;
利用脉冲展宽特性识别云和地面目标
2.
The temporal variation of the inversion density,the cavity loss(including laser output) and the photon density were analyzed by theoretical calculation in a electro-optical Qswitched ruby laser,and then the conditions of laser pulse stretching were calculated.
从理论分析了电光Q开关红宝石激光的反转粒子数密度、腔损耗(含激光输出)与光子密度之间瞬态变化关系,导出了脉冲展宽条件。
5)  pulse broadening
脉冲展宽
1.
Effect on pulse broadening due to first-order polarization mode dispersion compensation;
偏振模色散补偿对脉冲展宽的影响
2.
The experiment results prove that the pulse broadening for an optical pulse propagating along several hundreds meters optical fibers contained single mode or multi-mode during propagation is allowed.
实验结果表明,所选的多模和单模光纤经数百米传输后的脉冲展宽在容许误差范围之内,说明所选用的光纤可以作为纳秒激光时间脉冲波形测试的理想传输介质。
3.
Propagation induced pulse broadening of single event transient is studied by SPICE simulation.
利用SPICE电路模拟研究了SET在传播过程中的脉冲展宽效应。
6)  pulse width expanded
脉冲展宽
1.
Function of “pulse width expanded of multi-mode optical fiber” for bachelor thesis in process of practice teaching;
本科生毕业设计“多模光纤脉冲展宽”在实践教学中的作用
补充资料:半导体非线性光学材料


半导体非线性光学材料
semiconductor nonlinear optical materials

载流子传输非线性:载流子运动改变了内电场,从而导致材料折射率改变的二次非线性效应。④热致非线性:半导体材料热效应使半导体升温,导致禁带宽度变窄、吸收边红移和吸收系数变化而引起折射率变化的效应。此外,极性半导体材料大都具有很强的二次非线性极化率和较宽的红外透光波段,可以作为红外激光的倍频、电光和声光材料。 在量子阱或超晶格材料中,载流子的运动一维限制使之产生量子尺寸效应,使载流子能态分布量子化,并产生强烈的二维激子效应。该二维体系材料中激子束缚能可达体材料的4倍,因此在室温就能表现出与激子有关的光学非线性。此外,外加电场很容易引起量子能态的显著变化,从而产生如量子限制斯塔克效应等独特的光学非线性效应。特别是一些11一VI族半导体,如Znse/ZnS超晶格中激子束缚能非常高,与GaAs/AIGaAs等m一V族超晶格相比,其激子的光学非线性可以得到更广泛的应用。 半导体量子阱、超晶格器件具有耗能低、适用性强、集成度高和速度快等优点,以及系统性强和并行处理的特点。因此有希望制作成光电子技术中光电集成器件,如各种光调制器、光开关、相位调制器、光双稳器件及复合功能的激光器件和光探测器等。 种类半导体非线性光学材料主要有以下4种。 ①111一V族半导体块材料:GaAs、InP、Gasb等为窄禁带半导体,吸收边在近红外区。 ②n一巩族半导体量子阱超晶格材料:HgTe、CdTe等为窄禁带半导体,禁带宽度接近零;Znse、ZnS等为宽禁带半导体,吸收带边在蓝绿光波段。Znse/ZnS、ZnMnse/ZnS等为蓝绿光波段非线性光学材料。 ③111一V族半导体量子阱超晶格材料:有GaAs/AIGaAs、GalnAs/AllnAs、GalnAs/InP、GalnAs/GaAssb、GalnP/GaAs。根据两种材料能带排列情况,将超晶格分为I型(跨立型)、n型(破隙型)、llA型(错开型)3种。 现状和发展超晶格的概念是1969年日本科学家江崎玲放奈和华裔科学家朱兆祥提出的。其二维量子阱中基态自由激子的非线性吸收、非线性折射及有关的电场效应是目前非线性集成光学的重要元件。其制备工艺都采用先进的外延技术完成。如分子束外延(MBE)、金属有机化学气相沉积(MOCVD或MOVPE)、化学束外延(CBE)、金属有机分子束外延(MOMBD、气体源分子束外延(GSMBE)、原子层外延(ALE)等技术,能够满足高精度的组分和原子级厚度控制的要求,适合制作异质界面清晰的外延材料。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条