1) resonant loading factor
惯性荷载系数
2) inertial load
惯性载荷
1.
A finite element by coupling plane stress element with Fourier ring element was used in the calculation of the inertial load of the statically indeterminate rotor stay bearing.
应用平面应力单元和傅立叶环单元耦合的有限元法对航空发动机静不定转子支撑惯性载荷进行计算,解决了传统的材料力学方法求解静不定转子支撑惯性载荷时的两个缺陷,即当支座和轴承的耦合刚度不可忽略时,很难建立正确的变形协调条件以及当转子不存在明显的轴的特征时,采用梁的弯曲理论将导致较大的误差,同时,该方法将复杂的三维问题转化为二维问题,计算工作量小,速度快,精度及效率高。
2.
According to structure design of a rotating speed 3D phased array radars,The Analysis of dynamic wind moment and inertial load on which high rotating speed brought have been discussed in this paper.
结合国外同类雷达的研究概况,论述了提高天线转速带来的雷达天线动态风力矩、惯性载荷的变化,分析了扇扫对雷达结构设计的影响,给出了具体计算公式,计算出影响某雷达结构设计的关键数值,最后总结了高转速雷达结构设计的注意要点。
3) inertia load
惯性载荷
1.
The formula method of virtual work which was extensively applied in the structure optimization design is the rational formula method,but the dead weight and the inertia load of the structure were neglected in the past solution of the equation of virtual work,which resulted in the inaccuracy of the formula and result.
虚功准则法是理性准则法,在结构优化设计中应用非常广泛,但以前对其求解时均忽略结构的自重及惯性载荷,导致虚功准则法准则不准,结果不优,所以本文基于有限元法以桁架结构为例推导考虑自重及惯性载荷的虚功准则法方程组,并优化迭代求解公式。
2.
The paper presents the scheme of structural design of this radar and makes selection of stepping motor via the counting of wind load and inertia load of antenna.
给出了雷达的结构总体设计方案,计算了天线的惯性载荷以及风载荷,并由此得出方位转动电机所需的最小输出扭矩。
4) The inertial load method
惯性载荷法
5) inertial wind load
惯性风荷载
1.
The equivalent wind load(EWL) can be expressed in a separated form in terms of mean wind load,equivalent background wind load and inertial wind load.
桥梁等效风荷载一般被分为平均风荷载、等效背景风荷载和惯性风荷载 3部分 ,分别计算后再按一定的方式将其组合为总的等效风荷载 。
6) inertia car load
惯性车荷载
补充资料:阀门技术注重流量系数和气蚀系数
阀门的流量系数和气蚀系数是阀的重要参数,这在先进工业国家生产的阀门资料中一般均能提供。我国生产的阀门基本上没有这方面资料,因为取得这方面的资料需要做实验才能提出,这是我国和世界先进水平的阀门差距的重要表现之一。
3.1、阀门的流量系数
3.1、阀门的流量系数
阀门的流量系数是衡量阀门流通能力的指标,流量系数值越大,说明流体流过阀门时的压力损失越小。
按KV值计算式
式中:KV—流量系数
Q—体积流量m3/h
ΔP—阀门的压力损失bar
P—流体密度kg/m3
3.2、阀门的气蚀系数
用气蚀系数δ值,来选定用作控制流量时,选择什么样的阀门结构型式。
式中:H1—阀后(出口)压
H2—大气压与其温度相对应的饱和蒸气压力之差m
ΔP—阀门前后的压差m
各种阀门由于构造不同,因此,允许的气蚀系数δ也不同。如图所示。如计算的气蚀系数大于容许气蚀系数,则说明可用,不会发生气蚀。如蝶阀容许气蚀系数为2.5,则:
如δ>2.5,则不会发生气蚀。
当2.5>δ>1.5时,会发生轻微气蚀。
δ<1.5时,产生振动。
δ<0.5的情况继续使用时,则会损伤阀门和下游配管。
阀门的基本特性曲线和操作特性曲线,对阀门在什么时候发生气蚀是看不出来的,更指不出来在那个点上达到操作极限。通过上述计算则一目了然。所以产生气蚀,是因为液体加速流动过程中通过一段渐缩断面时,部分液体气化,产生的气泡随后在阀后开阔断面炸裂,其表现有三:
(1)发生噪声
(2)振动(严重时可造成基础和相关构筑物的破坏,产生疲劳断裂)
(3)对材料的破坏(对阀体和管道产生侵蚀)
再从上述计算中,不难看出产生气蚀和阀后压强H1有极大关系,加大H1显然会使情况改变,改善方法:
a.把阀门安装在管道较低点。
b.在阀门后管道上装孔板增加阻力。
c.阀门出口开放,直接蓄水池,使气泡炸裂的空间增大,气蚀减小。
综合上述四个方面的分析、探讨,归纳起来对闸阀、蝶阀主要特点和参数列表便于选用。两个重要参数在阀门运用中 。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条