1) self maps group
自映射群
1.
This paper gives a general method for determining the self maps group ∑ *V(1),V(1)of the Toda spectrum V(1) by its homotopy groups π *V(1), and by using a known result on π *V(1).
本文给出了由Toda 谱V(1)的同伦群πV(1)确定出它的自映射群[ΣV(1),V(1)]的一般方法,并且由πV(1)的已知结果确定了[ΣV(1),V(1)]在次数< 2(p2 + 2p)(p- 1)- 5 时的全部Zp 基元,其中p≥5 是素
2) Semigroup of continuous selfmaps
连续自映射半群
3) mapping class group
映射类群
1.
In this paper, we consider the group structure of mapping class group of connected sum of S~1 × S~2.
本题目主要讨论S~1×S~2的连通和的映射类群,它的群结构。
2.
We know that every elementθin the mapping class group Mods of S fixes the puncture a,and thusθcan be projected to an element of the mapping class group Mod_s.
我们知道,映射类群Mods中的任一元素θ保持穿孔点a不动,因而θ可投影为映射类群Mod_s中的一元素。
4) self-mapping sequence
自映射列
1.
The necessary and sufficient conditions for a class of n-dimensional self-mapping sequence with abnormal points;
一类n维自映射列有异状点的充要条件
6) self map
自映射
1.
Let X be a uniformly convex Banach space, E a closed convex subset of X and let T be self map on E.
设E是赋范线性空间X的凸子集,T是E到E的自映射,F(T)≠Φ,若对任意x1∈E,迭代序列M(x1,αn,βn,T)收敛于p,则p∈F(T)。
补充资料:自调自净自度
【自调自净自度】
(术语)同自调项。
(术语)同自调项。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条