说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 完备化空间
1)  completion space
完备化空间
1.
TTherem 2\ The subspace,the seperated quotient space and the completion space of a subkernal space are all subkernal spaces.
证明了亚核空间的子空间、分离商空间及完备化空间均是亚核空间 ,还证明了任意多个亚核空间的直积及可数多个亚核空间的局部凸直和也是亚核空间 。
2)  complete measurable space
完备化测度空间
3)  complete space
完备空间
1.
Finally, it proves that Henstock integral is the unified form of these integrals, and that R ( ) is incomplete space, while H () is complete space.
讨论了这几种积分之间的关系,证明了Henstock积分是这几种积分的统一形式,同时证明了R([a,b])是不完备空间,H([a,b])是完备空间。
4)  Perfect space
完备空间
1.
(2) If X is a perfect space, Y is an mosaic space,then X×Y is also a perfect space.
(2 )若X是完备空间 ,Y是mosaic空间 ,则X×Y也是完备空间 。
2.
Discusses the relation between K complete continuity of infinite matrix operator A inperfect space and K convergence of {Ap∞} in locally convex toplogical algebra Σ(A).
本文讨论了完备空间内无穷矩阵算子A的K全连续与局部凸拓扑代数Σ(λ)中{Ap∞}的K收敛之间的关系,得到了两者等价的充要条件。
5)  d-complete space
d-完备空间
1.
Fixed point for w-continuous mapping in d-complete space;
d-完备空间中w-连续映射的不动点
6)  com plete subspace
完备子空间
补充资料:可度量化空间


可度量化空间
metrizaUe space

  可度最化空间〔m由讼创e匆,Ce;Me邓哪押Moe即oc邓a-HcT即」 其拓扑由某个度且(1拙苗c)按下述规则生成的空间:点属于一个集合的闭包的充要条件是,它与此集合的距离为零.这样的度量如果存在就不是唯一的,除非空间是空集或仅由一个点构成.特别地,每个可度量化空间的拓扑都由一个有界度量生成.可度量化空间满足强分离公理(sepsmtion axloln):它是正规的,甚至是集体正规的.每个可度量化空间都是仿紧的.所有可度量化空间都满足第一可数公理(丘岛t axjomof countab正ty).但是,这些条件之一或任何一组都不足以保证一个空间是可度量化的.可度量化性的一个充分条件由n .C .ypblc皿(1923)得到:具有可数基(h昭e)的每个正规空间(nom刘spaCe)(甚至每个正则空间(化孚血rsP狱),A.H.THxOH田,1925)都是可度量化的.1923年,n.C.A门cKcal圳POB和n.C.yPbl-coH提出了空间可度量化的第一个一般的判别准则(见【11).在此基础上,发展了两个后继的、更完善的可度量化判别准则:1)一个空间是可度量化的,当且仅当它是集体正规的且具有开筱盖的可数加细集;2)一个空间是可度量化的,当且仅当它具有开筱盖的可数基本集且满足T,分离公理(stone一APxallre二bcK戒准则(Stone一趾khan罗1’s目criterion)).这里,空间X的开摄盖的一个集合亡称为基本的(丘川山切笼ntal),如果对每个点x‘X和x的每个邻域O:,存在一个覆盖下‘七和x的一个邻域O,二,使得与01:相交的下的每一个元素都含于口:.这些判别准则与无限制可除性(lu】n万佰以目dl忱山正勿)的性质及可度量化空间的全正规性(full 120~lity)的下述基本性质有关.可度量化空间X的每个开覆盖下都可以加细为一个开覆盖下’,使得对任一xeX,存在U‘下满足U{w任下’,x〔附}C= U. 基于另一个重要的思想—局部有限性,有一个重要的关于可度量化性的一般判别准则.良田.C姗阳。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条