1) quasi valuation ring
拟赋值环
1.
Let R be a commutative ring without zero divisor, R is called a quasi valuation ring,if it contains a non zero element \%b\% such that any non zero element of \%R\% divides a power of \%b\%.
一个无零因子的交换环 R 称为拟赋值环,如果 R中有一个非零元素b 具有下列性质: R 的任意非零元整除b 的幂。
2) Quasi Fuzzy Valuation
拟Fuzzy-赋值
3) Dubrovin valuation ring
Dubrovin赋值环
1.
Some equivalent characterizations for a skew group ring to be a Dubrovin valuation ring are given, among them all the prime ideals of a Dubrovin valuation skew group ring are characterised.
本文中对一个斜群环为Dubrovin赋值环给出了一系列等价刻画,并且刻画了一个Dubrovin赋值斜群环的所有素理想。
4) valuation ring
赋值环
1.
Let F be a field, φ be its valuation of rank 1 non trivial and non archimedean ,r be the valuation ring corresponding to valuation φ ,and p bethe maximal ideal of r.
设 F为域 ,φ为 F的秩为 1的非平凡 ,非阿基米德赋值 ,r为与其相对应的赋值环 ,p为 r的极大理想 。
2.
In this paper we will discuss symmetric bilinear forms and quadratic forms over valuation rings, and establish the congruent standard forms of symmetric matrices over valuation rings.
本文讨论赋值环上的对称线性型、二次型和对称矩阵的合同标准形。
5) Valuatic-Near-ring
赋值Near-环
6) pseudo-valuation ring
伪赋值环
1.
On theone hand, by using pseudo-localization principle and w-operations, it is shownthat R is a PVMR if and only if (R[Q],[Q]R[Q]) is a Manis valuation ring for anymaximal w-ideal Q of R; which is equivalent to that (R[P],[P]R[P]) is a pseudo-valuation ring for any regular maximal w-ideal P of R.
第二章首先介绍了Manis赋值理论,定义了伪赋值环,即P是R的唯一正则极大理想且(R,P)是赋值对。
补充资料:拟赋范空间
拟赋范空间
quasi -normed space
拟赋范空间【quasi~.万med sPace;K.a3”.opM“po.a一noe nPoerpa皿eTBol 其中给定一个拟范数(quasi一加rm)的线性空间(五朋ar sP即e).不是赋范的拟赋范空间的一个例子是具有o<尹
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条