1) contingent epiderivative
发生上导数
2) Occurrence
发生
1.
Preliminary Study on Disease Species and Occurrence of Polygonatum sibiricum Delar.in Guizhou;
贵州黄精病害种类及发生情况研究初报
2.
A preliminary study on the occurrence and epizootics of two natural enemies of cereal aphids in Tai an;
泰安郊区小麦田蚜虫两类天敌发生与流行的初步研究
3.
Study on the Occurrence of Wolly Apple Aphid in Shanxi Province;
检疫性害虫苹果绵蚜在山西发生危害的调查与研究
3) development
发生
1.
The Relationship between Catechol-O-Methyltransferase (COMT) Polymorphisms and the Development of Breast Cancer;
COMT基因多态性与乳腺癌发生及发展相关性探讨
2.
Advance on development and analysis on economic outlook of blood cells in teleostean;
硬骨鱼血细胞发生的研究进展及经济前景分析
3.
Influence of Environmental Conditions upon Development of Phytophthora Root Rot of Soybean Seedling;
环境条件对大豆幼苗疫病发生的影响
4) genesis
发生
1.
Melanin Genesis of Taihe Silkie Chicken During Embryonic Period;
泰和鸡黑色素的发生初探
2.
The organ genesis and formation of Coelomactra antiquata;
西施舌器官的发生和形成
3.
Objective:To explore relationship between the level of plasma soluble CD44S、CD44v6、v7 v8 variant and the genesis and the metastasis of four types of lung carcinomas(SCC、ADC、SCLC、BAC).
探讨血浆中可溶性 CD44标准型、v6和 v7- v8变构体的表达水平与四类肺癌的发生和转移的关系。
5) Occurence
发生
1.
Research on Occurence and Control of Whiteflies in the Greenhouse in Xinjiang of Southern Shanxi Province,China;
新绛县温室蔬菜粉虱的发生及防治
2.
Study on Occurence and Control of Shoot oriented Bamboo Pests;
笋用竹病虫害发生与防治的研究
3.
Studies on Occurence and Control of Diocalandra sp;
甘蔗斑点象的发生与防治研究
6) Generation
发生
1.
The Generation and Control of the Maize Head Sumt and Research on the Disease Resistance Breeding;
玉米丝黑穗病的发生与防治及对抗病育种的一些探讨
2.
Generation and Chemical Control of Pear Sucker;
延边地区梨木虱的发生及药剂防治
3.
The generation of human aesthetic psychology, closely related to the natural environment,was prec.
自然环境与人类审美心理的发生具有极为密切的关系。
参考词条
补充资料:delaVallée-Poussin导数
delaVallée-Poussin导数
de la VaDce - Poussin derivative
山hV团倪一P加石幽1.导数【de hVa肠纯一R版动l心由.dve;Ba服ny伙ella甲山即口.1,广义对称导数(罗nerali-欲互s脚四netric deriVa石ve) 由Ch.J.de h vall能一Poussin(【11)定义的一种导数.设r为偶数,并设存在占>O使对满足}t}<占的一切t,有 合{f(x。+‘,+f(x。一艺,,- 一刀。+冬:,口2+…+弄。r且+:(:):r,(*) 2一r名r!一rr‘、一,一,其中声:,…,戊为常数,下(t)~o(当t~O)且下(o)=0.数尽”f(r)(x0)称为函数f在点x。的:阶dehvallee-Poussin导数或;阶对称导数. 奇阶r的dehV么11阮一Po璐in导数可类似定义,只要把方程(*)代之为 冬仃(、+‘)一了(、一:)}- 2 一。。1十冬‘,。、十…十共:r坟十:(:):: 3!一厂Jr!一r”‘、一z一’ deh从山阮一Poussin导数左,帆)与R~nn二阶导数相同,后者常称为 Sch认么反导数.若关r)闻存在,则几一2)闻(r)2)也存在,但f(r一l)(x0)未必存在.若存在有限的通常双边导数f(r)帆),则人r)帆)二f‘r)(x0).例如,对函数f(x)二sgnx,f(川(0)=0,k=1,2,‘二,但左*+1)(。)(k=0,1,…不存在.若de h vall由一Po.in导数人。)(x0)存在,则由f的Fo~级数逐项微分r次所得级数S‘r)(f)在x。对于“>r是(C,的可和的,其和为寿)帆)([2〕)(见C威的求和法(。滋ms~·tion methods)).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。