1) Lie invariant subspace
Lie不变子空间
1.
In this paper, we introduce Lie invariant subspace of a linear mapping on a Banach algebra and give the general form of a linear map on a nest subalgebra of a Von Neumann algebra, under which the derivation space is invariant.
本文引入了Banach代数上线性映射的Lie不变子空间,给出了因子VonNeumann代数中套子代数上以导子空间为Lie不变子空间的线性映射的一般形式,研究了Lie导子与Lie自同构的概念及了Lie导子与Lie自同构半群的关系。
2) Invariant subspaces
不变子空间
1.
The existence for invariant subspaces of general JC~*-algebra onΠ_1 spaces is studied,and the sufficient conditions of the existence of invariant subspaces for different JC~*-algebra onΠ_1 spaces are obtained.
讨论了Π_1空间上一般JC~*-代数的不变子空间的存在条件问题,得到各类JC~*-代数存在Π_1型不变子空间的等价条件。
2.
In Chapter Two,under the framework of analytic Hilbert modules,we consider the classification of translation invariant subspaces of the Fock type spaces up to unitary equivalence.
在第二章中,我们将Fock型空间纳入解析Hilbert模的框架之下,考虑了它的平移不变子空间在酉等价意义下的分类。
3.
In this paper,we mainly discuss the property of invariant subspaces of the weighted Hardy spaces H2(βn).
讨论了加权Hardy空间H2(nβ)上的不变子空间的一些性质,设Β和M分别是加权Hardy空间上加权移位算子和非平凡的不变子空间,令PM是H2(βn)到M的正交投影算子,证明了PMΒ(H2(nβ)M)在M中不稠密的等价于M中存在非零元f满足Β*f∈M。
3) invariant subspace
不变子空间
1.
Direct decomposition of invariant subspace and its application;
不变子空间的直和分解及应用
2.
Similarity—invariant subspaces and similarity—preserving linear maps on C_p;
C_p上的相似不变子空间和保相似线性映射
3.
Domination Property and Invariant Subspaces for AM-compact and Dunford-Pettis Operator;
AM-紧算子和Dunford-Pettis算子的控制性质与不变子空间
4) lie invariants
lie不变量
5) quasi-invariant subspaces
拟不变子空间
1.
The classification problem of quasi-invariant subspaces of Fock space is explored and especially the classification of similar transformation of quasi-invariant subspaces generated by no-leading-term polynomial is studied.
探索Fock空间的拟不变子空间在相似意义下的分类问题,主要研究无主项多项式生成的拟不变子空间的相似变换的分类问题,给出了和z+w生成的拟不变子空间相似的拟不变子空间的完全刻画。
6) invariant stable subspace
不变稳定子空间
补充资料:变子
原子物理学中指数十种不稳定的基本粒子。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条