1) Multiplicative Hahn_Banach property
乘法Hahn-Banach
2) Hahn-Banach theorem
Hahn-Banach定理
1.
The Hahn-Banach theorem on Abel group is estab- lished.
进一步研究了可换平移空间与次范整线性空间之间的关系,建立了Abel群上的Hahn-Banach定理,作为其推论,得到了次范整线性空间中的Hahn-Banach定理。
2.
Then the conjugacy between β-normed space and its conjugate cone was discovered and an equivalent representation of the best approximating point was obtained by the Hahn-Banach theorem in β-normed space.
研究了赋β-范空间及其共轭锥上的最佳逼近性质,给出了n维赋β-范空间上最佳逼近元的存在性定理,并利用赋β-范空间上的Hahn-Banach定理揭示了赋β-范空间与其共轭锥之间的共轭性,得到了最佳逼近点存在性的等价刻画。
3.
Analogues the bounded linear operator theorem, the Hahn-Banach theorem and the resonance theorem are established in sub-normed Z-linear space.
泛函分析学中的有界线性算子定理,Hahn-Banach定理以及共鸣定理都可以移植于次范整线性空间之中。
3) Hahn-Banach smoothness
Hahn-Banach光滑
4) Hahn-Banach extension property
Hahn-Banach扩张性
5) Hahn method
Hahn法
1.
This paper studied the method of carrying out dynamic simulation on the track of main shaft axis of radial sliding bearing submitting dynamic pressure by the use of Hahn method,and combined with the thought of boundary condition of Reynolds integration,an amendment was carried out on the application .
研究了用Hahn法对径向动压滑动轴承主轴轴心轨迹进行动态仿真的方法,并结合Reynolds积分边界条件的思想,对半Sommerfeld边界条件的应用进行了修正,提高了计算精度。
6) Hahn-Banach extension theorem
Hahn-Banach延拓定理
1.
As the application of Hahn-Banach extension theorems,the theorem of X-β~* distinguishing X is obtained at the end of this paper.
作为Hahn-Banach延拓定理的应用,最后证明了局部β-凸空间的共轭锥对空间本身的分离定理。
补充资料:Hahn分解
Hahn分解
Hahn decomposition
【补注】亦见J谊由田分解(为记阴deco扣p昭ition).也用Hailn一Jordall分解(Haim一Jo攻场n decomp阅ltion)一词来代替l妞hn分解.恤分解[腼如加,毗犯;xalla卿。‘呷“1‘__ 设艺是集合X的子集族所成的口代数,f是足义仕X上的叮可加集函数,那么Hahn分解是指X可分解为两子集X+与X--之并,X+U工=X,使当M‘艺,MCX+时f(M))0,且当M6艺,MCX--时f(M)(0.一般说来,X的这种分解不是唯一的.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条