1) VRE(Variable Regression Estimation)
变量回归估计算法
2) regression estimation algorithm
回归估计算法
1.
Based on the normal support vector machine for regression estimation,an improved regression estimation algorithm of SVM is presented in this paper.
目前,如何设计快速有效的回归估计算法仍然是支持向量机实际应用中的问题之一。
3) regression estimator
回归估计量
1.
In accordance with the problem of seasonal fluctuation coefficient in sample survey of transport volume, this paper discusses the structure of regression estimator and the regression estimator′s application in two-phase sampling under the condition of sampling with PP
本文针对交通运输量抽样调查中存在的波动系数问题,讨论在PPS的抽样条件下,回归估计量的构造及其在两相抽样中的应
4) regression composite estimator
回归组合估计量
1.
Furthermore,regression composite estimator is constructed by thes.
在使用样本轮换的连续性抽样调查中,不仅可以利用前期调查的研究变量的信息,还可使用现期调查的辅助变量信息来建立回归模型进行回归估计,进而构造回归组合估计量,并在此基础上确定最优样本轮换率和最优权重系数,使得回归组合估计量的方差最小,从而更大程度地提高连续性抽样调查的估计精度。
5) weighted regression estimator
加权回归估计量
6) mixed regression estimator
混合回归估计量
补充资料:递推估计算法
利用时刻t上的参数估计孌(t)、存储向量嗘(t)与时刻 t+1上测量的输入和输出值u(t+1)和y(t+1)计算新参数值孌(t+1),再根据孌(t+1)计算出新参数值孌(t+2),直到获得满意的参数值为止。这种算法的每一步计算量都比较小,能够使用小型计算机进行离线或在线参数估计,可以估计时变参数,也可以实时估计适应控制器的参数(见适应控制系统)。20世纪60年代,递推估计算法得到迅速发展,到了70年代产生了许多不同的方法,例如,有离线方法的各种变形、卡尔曼滤波法、随机逼近方法和模型参考适应参数递推估计法等。递推估计算法的各种方法可以用一个统一的公式来描述:
给孌(t),F(t),嫓(t)和w(t)不同的值就得到各种不同的方法:①递推最小二乘法;②递推增广最小二乘法;③递推近似极大似然法;④递推辅助变量法;⑤递推广义最小二乘法;⑥卡尔曼滤波参数估计;⑦随机逼近法;⑧模型参考适应法;⑨时变参数递推估计法。
参考书目
Lennart Ljung,Torsten Soderstrom, Theory and Practice of Recursive Identification,MIT Press., Combridge, Mass., 1983.
给孌(t),F(t),嫓(t)和w(t)不同的值就得到各种不同的方法:①递推最小二乘法;②递推增广最小二乘法;③递推近似极大似然法;④递推辅助变量法;⑤递推广义最小二乘法;⑥卡尔曼滤波参数估计;⑦随机逼近法;⑧模型参考适应法;⑨时变参数递推估计法。
参考书目
Lennart Ljung,Torsten Soderstrom, Theory and Practice of Recursive Identification,MIT Press., Combridge, Mass., 1983.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条