1) positive definte quaternion matrix
正定四元数方阵
2) positive definite quaternion matrix
正定四元数矩阵
1.
Mean time a sufficient and necessary condition and a sufficient condition of judging quaternion matrix to be positive definite and a necessary condition of positive definite quaternion matrix are given.
本文给出了正定四元数矩阵的定义,同时给出了正定四元数矩阵的一个充要条件,一个必要条件,一个充分条件。
3) positive semidefinite(definite) quaternion matrix
半正定(正定)四元数阵
4) Square of positive semidefinite self-conjugate quaternion matrix
半正定自共轭四元数矩阵的平方
5) quaternion nonnegative definite matrix
四元数半正定矩阵
补充资料:四元数
四元数 quaternions 数的一种。1843年英国数学家W.R.哈密顿为解决建立三维复数空间的问题,把复数x+iy作为一对有序偶的实数来研究,并定义了一套运算规则,使虚数i在复数运算中有了明确的意义。为此,他创立了有4个分量的新数,即t+xi+yj+zk,他把这个数称之为四元数。其中t为四元数的数量部分,也称纯量部分,xi+yj+zk为向量部分,式中i、j、k满足: i2=j2=k2=-1,ij=k,ji=-k,ki=j,ik=-j,jk=i,kj=-i。 四元数的建立为向量代数和向量分析奠定了基础,四元数系又构成了以实数域为系数域的有限维可除代数,从而促进了代数学的发展。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条