1) surface-creeping w ave
表面爬行波
2) creeping wave
爬行波
1.
RCS of creeping wave for shadow region of wing leading edge
三维机翼前缘影区爬行波RCS研究
2.
Based on geometric diffraction theory,Finite difference in time domain is used to study the scattering and diffraction of electromagnetic waves on the surface of conductor sphere,to analyze the properties of creeping waves on the conductor surface and to calculate the scattering features of the electromagnetic waves on the metal sphere with different conductivities,buried in the sandy soils.
根据几何绕射理论,利用时域有限差分方法研究了导体球表面电磁波的散射和绕射,分析了导体表面爬行波的特点,并计算了埋藏在沙土中的不同电导率金属球表面电磁波的散射特征。
3.
To the low RCS target, the effect of creeping wave is remarkable and larger than that of facets and wedges in some cases.
利用 (G1 ,k =1 )Catmull Rom样条及其张量积曲面对低散射目标进行几何建模 ,并求解低散射目标爬行波RCS贡献 ,通过计算结果与实验结果比较 ,获得令人满意的结
3) diffraction field
爬行波场
1.
Analysis of the diffraction field on conductive cylinder and applications of electromagnetic compatibility designing;
圆柱体上爬行波场分析及电磁兼容性设计应用
4) creepage surface
爬电表面
补充资料:表面波天线
利用结构上的变化来截断正在传播的表面波,使其在不连续处产生功率辐射的天线。表面波是沿两种媒质的交界面传播、而在垂直于交界面方向的场是按指数律递减的电磁波,其传播速度小于自由空间的波速。传输表面波的结构是一种慢波结构,所以表面波天线又称慢波天线。
表面波天线由激励器和导向体两部分构成,它可以做成各种形状。表面波天线的典型形式是图中a 的平面结构,导向体采用波纹金属面或覆盖介质层的金属板,用喇叭或线振子来激励。柱面的表面波天线中,最普通的形式是图中b 的介质天线,或是采用圆波导激励的套有一系列金属盘的金属杆──雪茄形天线,它等效于一种人工介质结构。此外,广泛应用的螺旋天线、八木-宇田天线,皆为慢波结构,也可以看成是表面波天线。
激励器在导向体上激励起的表面波,沿导向体传输至终端处产生辐射,未转变为表面波的那部分功率直接由激励器向空间辐射。因此,表面波天线的总辐射场是这两部分场的叠加。
对于沿交界面方向无衰减、相位常数为βz、波长为λg、沿垂直交界面方向递减常数为αy的表面波,可用下式表征
(1)
式中 β0和λ0分别为自由空间平面波的相位常数和波长。在圆柱形交界面上也具有类似的关系,只是场强沿径向按汉克尔函数下降。因此,表面波天线的特性可用参数λg来表示。
如果根据所激励的波型,用计算或实验的方法确定相位常数βz或波长λg,则可用汉森-伍德亚德条件来设计表面波天线。根据此条件,沿长度为L的天线传播的表面波的总相移与空间波传播同一距离的相移相差180°时,增益最大。即βzL-β0L≈π,或者写成
(2)
根据式(2),当导向体长度L较大时,表面波的传播速度接近光速;根据式(1),径向递减常数的减小,表示能量可从一个较宽的有效口径上辐射出去,即天线方向性得到增强。但表面波激励效率和天线方向性往往是相互矛盾的。因此,实际上所能取得的方向性是有限的。
表面波天线的特点是能沿金属面平装。从电性能上说,它能在较宽的频带内保持一定的方向性和输入阻抗,且具有中等增益(通常小于20分贝)。在方向图的控制上,主波束可以工作在端射方向,也可以工作在边射方向。当表面波天线工作在微波波段的低端且用作地面天线时,往往采用人工介质结构,它比固态介质轻得多;介质覆盖的金属面通常用作飞机或导弹上的平装天线。
表面波天线由激励器和导向体两部分构成,它可以做成各种形状。表面波天线的典型形式是图中a 的平面结构,导向体采用波纹金属面或覆盖介质层的金属板,用喇叭或线振子来激励。柱面的表面波天线中,最普通的形式是图中b 的介质天线,或是采用圆波导激励的套有一系列金属盘的金属杆──雪茄形天线,它等效于一种人工介质结构。此外,广泛应用的螺旋天线、八木-宇田天线,皆为慢波结构,也可以看成是表面波天线。
激励器在导向体上激励起的表面波,沿导向体传输至终端处产生辐射,未转变为表面波的那部分功率直接由激励器向空间辐射。因此,表面波天线的总辐射场是这两部分场的叠加。
对于沿交界面方向无衰减、相位常数为βz、波长为λg、沿垂直交界面方向递减常数为αy的表面波,可用下式表征
(1)
式中 β0和λ0分别为自由空间平面波的相位常数和波长。在圆柱形交界面上也具有类似的关系,只是场强沿径向按汉克尔函数下降。因此,表面波天线的特性可用参数λg来表示。
如果根据所激励的波型,用计算或实验的方法确定相位常数βz或波长λg,则可用汉森-伍德亚德条件来设计表面波天线。根据此条件,沿长度为L的天线传播的表面波的总相移与空间波传播同一距离的相移相差180°时,增益最大。即βzL-β0L≈π,或者写成
(2)
根据式(2),当导向体长度L较大时,表面波的传播速度接近光速;根据式(1),径向递减常数的减小,表示能量可从一个较宽的有效口径上辐射出去,即天线方向性得到增强。但表面波激励效率和天线方向性往往是相互矛盾的。因此,实际上所能取得的方向性是有限的。
表面波天线的特点是能沿金属面平装。从电性能上说,它能在较宽的频带内保持一定的方向性和输入阻抗,且具有中等增益(通常小于20分贝)。在方向图的控制上,主波束可以工作在端射方向,也可以工作在边射方向。当表面波天线工作在微波波段的低端且用作地面天线时,往往采用人工介质结构,它比固态介质轻得多;介质覆盖的金属面通常用作飞机或导弹上的平装天线。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条