1) elastic-plastic damping
弹塑性阻尼
1.
The existence and uniqueness of (solutions) of the problem forced longitudinal vibrations of a beam with elastic-plastic damping are given.
讨论了IshIinskiǐhysteresis算子的性质,给出了一个具弹塑性阻尼的波动方程的古典解存在唯一性。
2) elastic-plastic energy dissipating bearing
弹塑性阻尼支座
1.
A new kind of elastic-plastic energy dissipating bearing is applied to the seismic isolation design of the Nanjing Jia River Bridge,a typical self-anchored suspension bridge with single tower.
对南京夹江自锚式悬索桥采用弹塑性阻尼支座进行减隔震设计,并采用非线性动力时程分析方法,对阻尼支座屈服荷载进行了参数敏感性分析。
3) Elastic damping
弹性阻尼
1.
External elastic damping support, if designed reasonably, may obviously improve the natural or forced vibration response characteristics of bearing rotor systems.
设计参数合理的外弹性阻尼支承可以明显改善轴承-转子系统的固有特性及强迫振动响应。
4) elastic damping components
弹性阻尼
1.
In order to achieve the purpose of better multi-dimensional vibration absorption,we adopt a parallel mechanism as the main mechanism of the vibration absorber,and use elastic damping components to absorb the energy at the driving position.
而采用并联机构作为减振装置的主体机构,并在驱动处辅以弹性阻尼系统,只需单层结构就能达到减振效果。
2.
Apply the parallel mechanism as to the main mechanism of multi-DIM vibration absorber and the elastic damping components are used to absorb the energy at the drives in order to obtain better vibration absorber , it only need to one layer.
为了达到较好的多维减振目的,采用并联机构作为减振装置的主体机构,并在驱动处辅以弹性阻尼系统,只需一层就能达到减振效果。
6) viscoelastic damper
粘弹性阻尼
1.
The study results show that the hybrid control for the base-isolation structure with viscoelastic damper can improve efficiency of control for .
对设置粘弹性阻尼且基础隔震结构的混合振动控制问题进行了研究。
补充资料:弹—塑性变分原理
弹—塑性变分原理
elastic-plastic variational principle
tan一suxing bionfen yuanll弹一塑性变分原理(elastie一plastic variation-al Principle)适于弹一塑性材料的能量泛函的极值理论。包括最小势能原理和最小余能原理。塑性加工力学中常用最小势能原理。变形力学问题的能量解法和有限元解法都基于最小势能原理。最小势能原理有全量理论最小势能原理和增量理论最小势能原理。 全量理论最小势能原理在极值路径(应变比能取极值的路径)下运动许可的位移场u‘中,真实的位移和应变使所对应的总势能取最小,即总势能泛涵巾取最小值,其表达式为”一0,’一万〔A(一,一关一〕dV一好多!一‘“ (l)式中“:为位移;户:为外力已知面上的单位表面力;关为体力;A(气)为应变比能。 A(勒)随材料的模型而异。对应变硬化材料(图a), E严_‘_‘_ A(乓r)一二丁二一气助+{刃(r)dr(2) 6(1一2刃~一“‘J一、-一、- 0式中E,,分别为弹性模量和泊松比;艺一硫瓜,r一掩不万,,,f,一,一音。魔。,,一,一,一音。*。!,;。f,为克罗内克(L.Kroneeker)记号,i=夕时a,一l,i笋少时民,一。,把式(2)代入式(1)便得到卡恰诺夫(几·M·Ka、aHoe)原理x的表达式。i厂:八 I’—几 I’一 ab 乞一乏(r)关系图 a一应变硬化材料;占~理想塑性材料 对于理想塑性材料(图b), 艺~ZGr(r
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条