1) diffussion jump process
扩散-跳过程
2) jump-diffusion process
跳扩散过程
1.
Option pricing by the martingale measure method considering the price of stock dividends payment and a jump-diffusion process;
支付红利股票的跳扩散过程下期权定价的鞅方法
2.
By changing basic assumption of Merton option pricing model to the assumption that jump process is a kind of special compound Poisson process and volatility without jump is the function of time, it is established that the behavior model of the stock pricing process is jump-diffusion process.
改变了Merton期权定价模型的基本假设,认为股票价格的跳跃过程为一类特殊的复合Poisson过程且无跳时的波动率为时间的函数,建立了股票价格服从跳扩散过程的行为模型。
3.
Assuming that the interest is given,we obtion European reload option pricing formulas on stocks with jump-diffusion process by using an actuarial approach.
在利率确定的情形下,利用保险精算方法,推导了股票价格服从跳扩散过程的欧式再装期权的定价公式。
4) jump-diffusion process
跳-扩散过程
1.
Option pricing model with credit risks when underlying assert returns are jump-diffusion processes;
标的资产价格服从跳-扩散过程的信用风险期权定价模型
2.
The Pricing of Corporate Debt Securities Based on Jump-diffusion Process;
公司资产具有跳-扩散过程的债务证券定价
3.
Option pricing from the price of stock dividends-payment and a jump-diffusion process;
支付红利的跳-扩散过程的股票期权定价
5) jump-diffusion
跳-扩散过程
1.
Gukhal (2004) derived analytical volution formula for compound option when underlying asset followed a special case of jump-diffusion process, that .
Gukhal(2004)给出了当标的股票服从跳-扩散过程的一种特殊情形--跳跃的相对高度的期望k=E(Y-1)=0的复合期权的定价公式。
6) jump-diffusion process
跳跃-扩散过程
1.
Provided that stock price process is a jump-diffusion process,the rate of return and the volatility are functions of time,the pricing formula of exponential European jump option can be obtained with the principle of equivalent martingale measure.
假定股票价格过程服从跳跃-扩散过程,且无风险利率,股票收益率、波动率均为时间函数,利用等价鞅测度方法得出了支付函数为幂型的欧式期权定价公式。
2.
This paper assumes that the underlying price obeys a renewal jump-diffusion process, studies how to determine a sound hedge ratio when given an acceptable probability of hedge failing, and suggests the way to assume the parameter of calculating the optimal hedge ratio which is finally validated with an example.
假设标的股票服从更新跳跃-扩散过程,研究在保值者给定可接受的保值失败概率情况下,如何确定合理的套期保值比率。
3.
Based on option theory,a three-factor model for evaluating the coal mining rights is set up when the interest rate and convenience yield follow mean-reverting process and the coal price follows jump-diffusion process.
基于期权理论,构建了煤炭价格服从跳跃-扩散过程,利率和便利收益服从均值回复过程的煤炭资源采矿权估价三因素模型。
补充资料:具有扩散的分支过程
具有扩散的分支过程
brandling process with diffusion
具有扩散的分支过程{b伽山ingp~ss衍thdi加si印;。er朋川丽e,np()明eeec阴中中y3“e后] 分支过程的一个模吧,其巾’!二殖的粒f扩散在某 一认域G中设区域“是r维的,具有吸收边界改子,并设区域G中的粒子相互独立地进行Brown运动.在G中的每个粒子在时间A,之内变成nl、粒f的概率为八加+川△幼.n毕1八t,0.设子代粒子从它们的出生地出发汁始它们的独立演化.设Pl二一艺尹,l几,{八{的母函数是 _/丈.、)二乏p。‘’, 琦一硬r并设从伍)表小初始时刻在丫任〔,处的个粒于在时刻之位丁,集介4仁G中的粒子数其生成泛函 [ H“;·“.”万〔三c‘p{)’一(\)拜、‘办’满足拟线性抛物型方程右aZH.,,,、aH 、,:二‘二二十f(H、=上二二‘, l织a对“‘一’价·其初始条件为 H(0,x,s(·))二s(x),边界条件为 H(t,x,s(·川、_a。=0·用0<又1<又2簇之3(…表示其本征值,甲,(x)>0是问题 人矛伞 y岑一于+又毋=0,甲(x)},_。二=0 ,墓!OX亨相应于又1的本征函数.当t~的时渐近关系式 任热、,(‘)勺尤e(口一入】)‘切,(x)成立.据此,当a<又1时称问题为下临界的,“=又1时为l峥手妙,“>又1时为牛峥暑的·当“〔儿时,带扩散的分支过程灭绝概率为1,而当a>又1时,在一般情况下,灭绝概率和事件{入.。(G)一的当t~的时}的概率都是正的.依赖于其临界性,带扩散的分支过程也有类似于不带扩散的分支过程的极限定理.【补注】其他参考文献可在分支过程(branching pro-份sses)中找到.B.AC殆日以习毛.,撰刘秀芳译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条