说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 平方非剩余
1)  square non-residue
平方非剩余
2)  quadratic remainder
平方剩余
1.
With a recursive sequence,quadratic remainder and congruence,the diophantine equation x2-3y4=97 is proved that it has only positive integral solutions(x,y)=(10,1).
运用递归数列,同余式和平方剩余证明了不定方程x2-3y4=97仅有正整数解(x,y)=(10,1)。
2.
This paper proves that the Diophantine Equation has only positive integral solution with the methods of recursive sequence,congruence and quadratic remainder.
利用一种初等的证明方法,即递推序列、同余式和平方剩余的方法,对不定方程x2-11y4=38的正整数解进行了研究,证明了不定方程x2-11y4=38仅有正整数解(x,y)=(7,1)。
3.
Defined are the characters of quadratic remainder while the arithmetic is provided for choosing X coordinate of base point G .
结合椭圆曲线域参数属性 ,讨论了平方剩余的定义、性质 ,完整地设计出选取基点G的X坐标的算法 。
3)  quadratic residue
平方剩余
1.
In this paper,the author has proved that the Diophantine equation x3+64=21y2 has only an integer solution(x,y)=(-4,0),(5,±3) and then gives all integer solution of x3+64=21y2 by using the elementary methods such as recursive sequence,congruent fomula and quadratic residue.
利用递归数列、同余式和平方剩余几种初等方法,证明了不定方程x3+64=21y2仅有整数解(x,y)=(-4,0),(5,±3);给出了x3+64=21y2的全部整数解。
2.
In this paper,the author has proved that the Diophantine equation x3+27=7y2 has only an integer solution(x,y)=(-3,0),(1,±2) and then gives all integer solution of x3+27=7y2 by using the elementary methods such as recursive sequence,congruent fomula and quadratic residu
利用递归数列、同余式和平方剩余几种初等方法,证明了不定方程x3+27=7y2仅有整数解(x,y)=(-3,0),(1,±2);给出了x3+27=7y2的全部整数解。
3.
In this paper the author has proved that the Diophantine equation x3+27=26y2 has only integer solutions(-3,0),(-1,±1),(719,±3781)with the methods of recurrent sequence,congruence and quadratic residue.
利用递归数列、同余式和平方剩余证明了不定方程x3+27=26y2仅有整数解(-3,0),(-1,±1),(719,±3781)。
4)  congruence [英]['kɔŋgruəns]  [美]['kɑŋgrʊəns]
平方剩余
1.
In this paper,it has proved that the Diophantine equationh x2-3y4=222 has only positive integral solutions(x,y)=(15,1) with the methods of recursive sequence,quadratic remainder and congruence.
运用递归数列,同余式和平方剩余证明了不定方程x2-3y4=222仅有正整数解(x,y)=(15,1)。
2.
This paper proves that the diophantine equation x2-3y4=118 includes 3 positive integer solutions at least (x,y)=(11,1),(19,3),(650851,613) with the primary methods of recursive sequence,quadratic remainder and congruence.
本文利用一种初等的证明方法,即递归数列,同余式和平方剩余的方法,对一个不定方程x2-3y4=118的正整数解进行了研究。
5)  guadratic remaider
平方剩余
6)  square residue
平方剩余
1.
Let n is a positive integer, and b2(n) is the square residue of n .
设n为任一正整数,b2(n)为n的平方剩余数。
补充资料:非剩余


非剩余
non-residue

非剩余f朋峨幼山.;.~],”次不模附的 一个数a,对于它同余式(co玛笋篮序笼)x”二a(功团。)无解.亦见整数的剩余(代滋坦吐玩of anin·镇罗r).【补注】通常这一术语用于凡二2的情形.C.F,Ga哪在其《算术研究》(Disq山迈。。留A石血咪石份)中首次使用这一名词.沈永欢译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条