1) generalized Katona Kleitman theorem
Katona-Kleitman定理的推广定理
1.
The present paper presents a brief proof of the generalized Katona Kleitman theorem: Let S={1,2,…,n}, S 1,S 2,…,S k be the k partition of S and F be a family of the subsets of S , if there are no A,B in F, there must exist S 1 satisfying A∩S i=B∩S i, but for others S j(1≤j≠i≤k) A∩S jB∩S j , then |F|≤n [n/2].
给出 Katona-Kleitman定理的推广定理的简短证明 。
2) Kruskal-Katona Theorem
Kruskal-Katona定理
3) generalized theorem
推广定理
1.
The proof of Stolz theorem and the generalized theorem are given.
给出了Stolz定理的理论证明及推广定理,并举例说明了推广的Stolz公式的应用。
4) extended Snell theorem
推广的Snell定理
1.
Based on extended Snell theorem,a region model of nomal material around negative refractive index material is constructed and relative refractive index at the interface of two materials is analyzed by emoplying FDTD method.
利用一个正常材料包围负折射率材料块的区域模型,根据推广的Snell定理,分析在改变该模型正常材料区域的介电常数对材料交界面相对折射率的影响。
5) generalized Noether theorem
推广的Noether定理
1.
For the former, their solutions and simplified conditions of solvability and generalized Noether theorem are abtained by a series of discussions and simplifications.
把实轴上具一阶奇性解的特征奇异积分方程及其相联方程的求解化为实轴上具一阶奇性解的 Rie mann边值问题讨论,对后者在提法、奇点的对待和典则函数的理解方面作了与传统有所不同的处理,对前者通过对解和可解条件的简化及等价性的讨论,得到解和可解条件的简化形式及推广的Noether定理。
6) the generalized residue theorem
推广的留数定理
1.
The solutions based on the generalized residue theorem and Bertrand-Poincare formula of singular integrals, which are greatly simplified, can also be used in similar problems.
由于运用了推广的留数定理和Bertrand型换序公式使本问题及类似问题解法得以简化。
补充资料:弦切角定理
Image:11732728308128259.jpg
弦切角定理就是弦切角等于它所夹的弧所对的圆周角。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。