1) undrained condition
非渗流条件
2) drainage condition
渗透条件
1.
Scattering of plane P waves around a cavity in poroelastic half-space is studied by numerical results,and the effects of incident frequency and angle,drainage condition,porosity,Poisson s ratio,etc.
本文通过数值计算研究了入射平面P波在饱和半空间中洞室周围散射问题,分析了入射波频率和角度、边界渗透条件、孔隙率、泊松比等参数对散射的影响。
5) non-Darcy flow
非Darcy渗流
1.
One-dimensional consolidation of saturated cohesive soil considering non-Darcy flows
考虑低速非Darcy渗流的饱和黏性土一维固结分析
2.
Currently, the low permeability oilfield in Changqing is in the status of low natural output capacity and difficulty to see injection-water effect of oil extraction well, therefore it is necessary to study non-Darcy flow characteristic and mechanism of low permeability rocks.
由于目前长庆低渗透油田处于自然产能低、采油井难以见到注水效果的状况,因此有必要研究低渗透岩石的非Darcy渗流规律和机理。
3.
In order to improve the precision of consolidation computation,Terzaghi′s one-dimensional consolidation theory is modified based on the non-Darcy flow described by the power function for the lower velocity of flow and the linear function for higher velocity of flow,and the numerical analysis is performed using the finite volume method.
引入可以同时考虑低速渗流曲线段和较高速渗流直线段的非Darcy渗流方程,重新推导饱和黏土一维固结方程,并采用有限体积法对该方程进行数值求解。
6) non-Darcy seepage
非Darcy渗流
1.
One-dimensional consolidation properties of saturated clays with non-Darcy seepage;
非Darcy渗流时饱和粘土的一维固结特性
2.
Terzaghi’s one-dimensional consolidation theory is modified based on the non-Darcy seepage equation considering the initial hydraulic gradient,and the finite difference scheme is introduced.
采用考虑起始水力梯度的非Darcy渗流方程,修正了Terzaghi饱和黏土一维固结理论,给出了相应的有限差分格式,并据此探讨了起始水力梯度对渗流前锋、孔隙水压力和土层固结度的影响。
3.
Terzaghi s one-dimensional consolidation theory is modified based on the modified non-Darcy seepage equation considering the initial hydraulic gradient,and solved by using the finite volume method in this paper.
采用考虑起始水力梯度的非Darcy渗流方程,修正了Terzaghi饱和黏土一维固结理论,并用有限体积法进行了求解。
补充资料:非饱水土渗流
在孔隙未被水分充满(未达到饱和)的土壤中水的流动。农田土壤中水分的运动,在灌溉、排水、降雨和蒸发影响下地下水面以上土层(包气带)中水分的运动都属于非饱水土中的渗流。
土壤水在势能的作用下流动。非饱和土壤水的势能包括重力势、压力势(土壤负压或称毛管张力)等。垂直一维非饱水土壤渗流速度v,根据达西渗流定律可写成:
式中嗞为非饱水土中的总位势(以水头计);z为自基准面向上的垂直坐标值;h为土壤水的压力水头(负压);K(θ)为非饱水土壤的渗透系数(或称水力传导度),是含水率θ的函数。
根据质量守恒原则,可求得以θ和h为变量的两个一维垂向渗流微分方程:
(1)
(2)式中为非饱水土的扩散度;为非饱水土的容水度;t为时间变量。
对少数具有简单初始和边界条件的问题,通过求解式(1)和(2),可得解析解。但对于复杂的非饱水土中渗流问题需通过数值计算法求解,从而可预测分析土壤中含水率分布和变化情况。
参考书目
J. Bear, Dynamics of Fluids in Porous Media, American Elsevier, New York,1972.
土壤水在势能的作用下流动。非饱和土壤水的势能包括重力势、压力势(土壤负压或称毛管张力)等。垂直一维非饱水土壤渗流速度v,根据达西渗流定律可写成:
式中嗞为非饱水土中的总位势(以水头计);z为自基准面向上的垂直坐标值;h为土壤水的压力水头(负压);K(θ)为非饱水土壤的渗透系数(或称水力传导度),是含水率θ的函数。
根据质量守恒原则,可求得以θ和h为变量的两个一维垂向渗流微分方程:
(1)
(2)式中为非饱水土的扩散度;为非饱水土的容水度;t为时间变量。
对少数具有简单初始和边界条件的问题,通过求解式(1)和(2),可得解析解。但对于复杂的非饱水土中渗流问题需通过数值计算法求解,从而可预测分析土壤中含水率分布和变化情况。
参考书目
J. Bear, Dynamics of Fluids in Porous Media, American Elsevier, New York,1972.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条