1) J-symmetric differential expression
J对称微分算式
2) J-symmetric differential operator
J-对称微分算子
3) J-symmetric ordinary differential operator
J-对称常微分算子
4) J-symmetric Euler differential operator
J-对称Euler微分算子
5) symmetric differential expression
对称微分算式
1.
The adjointness of the product of two differential operators generated by a fourth order symmetric differential expression is discussed.
该文主要讨论了由正则和奇异的4阶对称微分算式生成的微分算子的积算子的自伴性,得到了I(I=[a,b]或[a,+∞))上的积算子L=L2L1是自伴算子,当且仅当AQ_4~(-1)(0)C=BQ_4~(-1)(0)D;I上的幂算子L_1~(2)是自伴的充要条件是L1是自伴的,并且给出了反例,说明2个自伴算子的积不一定是自伴算子,不同的非自伴算子的积可以是自伴算子。
2.
In this paper,the adjointness of the product of three differential operators were discussed by means of the construction theory of self-adjoint operators and matrix computation,and generated by a second order symmetric differential expression,including ordinary and singular two cases.
利用自伴算子的基本理论及矩阵运算,讨论了由正则和奇异的二阶对称微分算式生成的微分算子的积算子的自伴性,得到了3个算子的积算子是自伴的充分必要条件。
3.
The adjointness of the product of two differential operators generated by a 2nth-order symmetric differential expression is discussed.
主要讨论了由正则和奇异的2n阶对称微分算式生成的微分算子的积算子的自伴性,利用微分算子理论和矩阵计算,得到了I(I=[a,b]或[a,∞))上的积算子L=L2L1是自伴算子的充分必要条件。
6) J-symmetric operator
J-对称算子
1.
We know that all J-symmetric operators have J-selfadjoint extensions.
在J-对称算子扩张基本理论的基础上,运用Naimark谱核的方法,得到J-对称算子扩张为J-自伴算子后其谱的变化情况。
补充资料:对称与非对称
反映客观事物在结构、功能、时空上的特殊联系的范畴。对称指事物以一定的中介进行某种变化时出现的不变性,非对称指事物以一定的中介进行某种变化时出现的可变性。在自然界中普遍存在,形式多样。对称有空间对称(包括形象对称和结构对称)、时间对称、概念对称等。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条