说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> J-自伴向量微分算子
1)  J-selfadjoint vector differential operator
J-自伴向量微分算子
1.
By the method of analysis,the resolvent operator of the 2n-order J-selfadjoint vector differential operator with one endpoint singularity is studied.
利用分析的方法研究了2n阶J-对称向量微分算式在一端奇异情形时赋予J-自伴边条件所生成的J-自伴向量微分算子的预解算子,得到其预解算子的一些解析性质。
2)  J selfadjoint operator
J-自伴微分算子
3)  self-adjoint vector differential operator
自伴向量微分算子
1.
Two-item second order self-adjoint vector differential operator is studied.
研究了两项二阶自伴向量微分算子,得到了其谱是离散时系数矩阵满足的条件。
4)  J-selfadjoint operator
J-自伴算子
5)  self-adjoint differential operator
自伴微分算子
6)  non-self-adjoint differential operator
非自伴微分算子
补充资料:非自伴算子


非自伴算子
non-self -adjoint opetator

非自伴算子I咖一时心咖毓勿冲.如;肚c明ocoll”牌-皿‘由。血ep翻pl 11d饮吐空间中的线性算子,它的谱分析不能纳人自伴算子(望互f一咧。int operator)理论和它最简单的推广:酉算子(刚扭四。体m加r)理论和正规算子(加m创。详”仍r)理论的框架.非自伴算子产生于没有能备守恒条件进行的过程的讨论中:带摩擦的问题,开谐振器的理论,非弹性散射问题及其他.一定的自伴间题,其中的算子值函数了(劝通过变量分离显示出非线性地依赖于一个谱参数又,也导致非自伴算子的研究.有关非自伴算子理论的许多命题对作用在任意B坦解h空间,F空间,拓扑向量空间等等空间上的算子也成立. 研究非自伴算子最广泛的方法是预解式(把阳h印t)的估计,其中用到解析函数,渐近展开等理论.有关非自伴算子理论的第一批工作是G.Birkl刃ff,只·八.Ta珊伴HH,B.A.C戊K朋和其他人在研究关于常微分方程的间题时作出的.这些研究应用了预解式围道积分的Q‘hy方法. 对非自伴偏微分算子很长时间一直缺乏有效的研究方法.这可以用这样的算子的预解式作为解析函数的复杂结构来解释. 在非自伴算子(特别地,偏微分算子)一般理论的发展中,M.B.Ke川场皿11(【1],也见【2」)的工作起了重要的作用.他研究了形如 夕“了(又)夕(l)的方程,其中y是一定的Hn比rt空间H中的元素,并且算子了(劝有以下表示: 丫(又)=B。+又H。B:+…+又”一’HJ一’B。_,+又“H名.其中H。是一个有限阶的完全连续可逆自伴算子,并且凡(0簇j(”一l)是任意的完全连续算子·(作用在Hil忱rt空间上的完全连续算子A称为一个有限阶算子(。详斑~tor of丘由teo戏记r),如果对某个p(0 LLy,J’Ly,JJ“‘,一,’‘”’一,‘’、一,’了’‘是自伴的,其中A。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条