|
说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
|
|
您的位置: 首页 -> 词典 -> 无穷限倒向随机微分方程
1) infinite horizon backward stochastic differential equation
无穷限倒向随机微分方程
2) infinite dimensional SPDEs
无穷维随机偏微分方程
1.
Successive approximations of infinite dimensional SPDEs with jump;
带跳的无穷维随机偏微分方程的逐次逼近
3) backward doubly stochastic differential equation
倒向重随机微分方程
1.
The comparison theorem of backward doubly stochastic differential equations with Poisson process(BDSDEP) can be obtained under Lipschitz condition by means of Gronwall inequality,Young inequality,and It formula,which means the solution increases with the coefficient and the terminal value of BDSDEP.
在Lipschitz条件下,利用Gronwall不等式、Young不等式和Ito^公式等,得到了带跳的倒向重随机微分方程解的比较定理,说明了带跳的倒向重随机微分方程的系数和终端值越大,其解越大。
4) backward stochastic differential equations
倒向随机微分方程
1.
Continuous dependence of the solution of multi-dimensional reflected backward stochastic differential equations on the parameters;
多维反射倒向随机微分方程的解对参数的连续依赖性
2.
A stability theorem of the solutions to backward stochastic differential equations under non-Lipschitz condition;
非Lipschitz条件下倒向随机微分方程解的稳定性
3.
The local and global existence and uniqueness are proved for the solution of Duffi-Epstein type backward stochastic differential equations with non-Lipschitz coefficients.
在系数满足一类非Lipschitz条件下证明了Duffie-Epstein框架下倒向随机微分方程的局部与整体解的存在唯一性并研究了解的稳定性问题。
5) ckward stochastic differential equation of It(?) type
Ito型倒向随机微分方程
6) BSDE
倒向随机微分方程
1.
Comparison theorem for solution Z of BSDEs;
倒向随机微分方程解Z的比较定理(英文)
2.
The limitation theorem of g-supersolution for BSDEs under non-Lipschitzian coefficient;
非Lipschitz条件下的倒向随机微分方程的g-上解的极限定理
3.
Control Theorem of BSDE s Solution;
倒向随机微分方程解的控制定理
补充资料:无穷阶微分方程组
无穷阶微分方程组 eferential equatkns, infinite- order sys 其中A(t)是算子值函数,A(O是加na‘11空间B上的算子,x‘B.设 x(t)=u(t)x。是一个解,x(0)=石.这个解的(上)BOhi指数((uP娜)习幻址以加阅O凡(为)是所有这样的实数p的下确界,使得存在一个凡,对所有0簇‘簇t 0使得 l{x(t)11)城exP(又(r一:))1 lx(t)l}.如果从劝是(AI)的一个几刃乃旧皿指数(卜归p姗v。耳幻nellt)(见加n”。。特征指数山归pUnovd以ra以eI乞-宝以卯幻e以)),那么 一的(凡(x。)(又(x。)(凡(x。)(00.区间【凡(x。),凡(x。)1称为该问题之解的Bohi区间(E心址in忱n旧1). 现在,再来考虑方程(3)并设f(t,0)=0.这个方程称为满足性质,(v,N,p)(一co<,<①,N>0,p>0),如果它的在某时刻气具有}}x(t。)ll:)t。(解对它有定义)满足估计 1 lx(t) 11簇万。中(一v(r一:))}lx(r)11.推广上面的定义,在零点的(上)B匕hi指数是又=一v的下确界,对于这样的v存在Nv,Pv使得方程有性质岁(v,从,八).无穷阶橄分方程组【成压洲川自】月.枷.j诚如悦叫滋匕.母,恤of;朋巾垂ePell职幼~eyP姗e.朋:比cT.a6e~业~0助p”Ka],无穷微分方程组伽五苗忆s岁tonof山伍洲泊d幻叹ua由侣) 微分方程组 d戈 亩一关(‘,xl,‘”),‘一‘,2,…(,)的一个无限集,包括未知函数凡(t)(k=1,2,…及其导数的无限集.这种方程组的解定义为函数集合{xk(t)},对于这些函数方程组中所有的方程都恒等. 方程组(l)称为可数的(countable),区别于不可数(坦K幻曲协ble)方程组 dx_ 二十‘=f,(t,…,x。,…),(2) dtJ“、一”一:,,,、一其中的仪取遍某个不可数的数集.类型(2)的方程组包括待定函数{凡(t)}及其导数的不可数集.人们还研究了含有两个或更多个自变量的未知函数的不可数集的偏微分方程. A.H.肠砍。R曲(「1』)是第一个发表类型(l)的微分方程组理论的作者.他的主要成果是类型(l)的解的存在性证明,其中假定了等式右边对任意值x:,气,…,0(卜气簇a有定义,对给定的t值关于x,,、,…,连续,并对给定的xl,气,…,在区间氏,t0十a]上关于t是可测的.另外,如果推广的Li脚而枕条件 沃(t,x i,xi,...)试(t, x;,x;,…!‘蓦凡‘lx,一x:l成立,以及级数 互凡一人<注收敛且一致有界,又如果给定的初始条件使得级数 答1、(‘).收敛,则(l)的解x,(r)(i=l,2,…)是唯一的. 可数方程组理论后来的发展涉及到解的有界性条件(口J)、对参数的解析依赖性、JI刃l州曲稳定性以及解的其他性质(【2]).研究得最透彻的是线性和拟线性可数微分方程组. 用算子方法研究无穷阶方程组特别有效.例如,代之以方程组(l)考虑算子方程 dX 只井=f(t,X).(3) dt其中,x(t)是E以mCh空间B中的无限维向量,f(t,x)是取值在该空间中的无穷维向量函数,而导数是Fr改bet的意义下的.特别地,下述有关方程(3)的结果取自团. 如果f(t,x)是有界算子,则根据局部存在性定理推得,如果Bohi指数在零点是负的(t3D,那么具有接近于零初值的解能在任意大的区间上有定义. 如果 f(r,x)芝Ax,其中A是由无穷维矩阵给定的有界算子,那么当且仅当A相似于斜H即面te矩阵时,在Hi】比找空间中所有的解对一阅0,要求有 1 IF(r,x)jl0,1}x 11
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条
|