说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 带跳倒向随机微分方程
1)  backward stochastic differential equations with jumps
带跳倒向随机微分方程
1.
A stability theorem of the solutions is derived to the following backward stochastic differential equations with jumps y~ε_t=ξ~ε+∫~T_tf~ε(s,y~ε_s,z~ε_s,v~ε_s)ds-∫~T_tz~ε_sdw_s-∫~T_t∫_Uv~ε_s(z)(ds,dz),ε≥0,t∈ under non-Lipschitz condition and the main tool is a corollary of the Bihari inequality.
证明了带跳倒向随机微分方程列ytε=ξε+∫tTfε(s,ysε,zsε,vsε)ds-∫tTzsεdws-∫∫tTUvεs(z)N(ds,dz),ε≥0,t∈[0,T]在非Lipschitz条件下其解的稳定性;使用的主要工具是Bihari不等式的一个推论。
2)  Backward doubly stochastic differential equations with jumps
带跳倒向双重随机微分方程
3)  reflected backward stochastic differential equation with jumps
带跳反射倒向随机微分方程
4)  backward stochastic differential equations with jumps (BSDE)
带跳倒向随机微分方程(BSDE)
5)  BSDE with jumps
带跳的倒向随机微分方程
6)  Reflected backward doubly stochastic differential equation with jumps
反射型的带跳倒向双重随机微分方程
补充资料:随机微分方程
      见随机积分。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条