1) quantum discrete Fourier transform
量子离散Fourier变换
1.
Under the framework of the Cirac Zoller model, a scheme for realizing the quantum discrete Fourier transform in the ion trap by some unitary operations is discussed.
在Cirac Zoller模型的框架下 ,讨论在离子阱中如何利用幺正操作实施量子离散Fourier变换的方案。
2) discrete Fourier transform
离散Fourier变换
1.
Study on the inside source hologram reconstruction algorithm based on discrete Fourier transform;
基于离散Fourier变换的内源全息图重构计算方法
2.
Then,the discrete Fourier transform(DFT) was applied to the low frequency subband of the DWT transform.
首先对图像进行DWT变换,然后在DWT变换后的低频子带进行离散Fourier变换(discrete Fourier transform,DFT)变换,将DFT变换的相位信息二值化得到BPOF,并将其作为水印嵌入到相应的幅值中。
3.
Based on generalized Mbius transform and Ramanujan s sum,arithmetic Fourier transform(AFT) is used to compute discrete Fourier transform(DFT) in this paper.
在广义Mobius变换与Ramanujan和的基础上,采用算术Fourier变换(AFT)计算离散Fourier变换(DFT),直接提取了DFT的Cosine系数。
3) discrete Fourier transform(DFT)
离散Fourier变换
1.
A block diagonal matrix can be obtained by utilizing the discrete Fourier transform(DFT)and the symmetrical structure called 1-ring and 2-ring in the vicinity of an extraordinary point on a mesh.
利用控制网格拓扑结构的对称性,通过将奇异点周围1-环和2-环的控制顶点进行离散Fourier变换(DFT)得到分块对角阵,将其进行特征分解及排序之后,再通过离散Fourier逆变换(IDFT)和截断等操作得到细分矩阵的高次幂的表达式,从而得到Loop细分曲面新的精确参数化公式。
4) Discrete fourier transformation
离散Fourier变换
5) Discrete fourier transform direct component
离散Fourier变换直流分量
6) quantum Fourier transform
量子Fourier变换
1.
A decomposition of quantum Fourier transformation;
量子Fourier变换的分解
2.
Simulation of the multi-qubit quantum Fourier transform;
多量子位量子Fourier变换的仿真实现研究
3.
By using the circuit model which is the most representative in the study of quantum computing,the quantum computing process was simulated and two of the important quantum algorithms—the Deutsch s algorithm and the quantum Fourier transform were implemented.
采用量子计算研究中最具代表性的电路模型模拟量子计算过程,实现Deutsch算法和量子Fourier变换的演算,构建了量子信息与计算的仿真平台雏形。
补充资料:Fourier-Stieltjes变换
Fourier-Stieltjes变换
Fourier-Stieltjes transform
F侧rier,S翻扣变换【F皿血r~S血为。。,洲俪加;。yp‘e-CT,月T‘eea npeo6pa3o.a。。el 与f饭时度变换(Founer tiansform)有关的一种积分变换(加e罗刁tra、扔而).令函数F在〔一的,+的)上有有界变分.函数 价‘·,一友也一‘一“F。,(·)称为F的F既的er一St记1勾巴变换(Fb山交r一Stiel甘estl习nsform).由积分(*)确定的函数势是有界且连续的.每个可展为绝对收敛的Fo~级数艺撼气。‘。‘的周期函数甲能写成积分(*),其中F(x)=艺。、,气.公式(*)是可逆的:如果F有有界变分且 各,、F(x+0)+F(x一0、 F(劝-一. 2那么 、。)一、(。)一,粤一了,(;)一全共己:. ‘’、‘寸2“生r‘”讨 x‘(一的,+田),其中积分取为在①的主值. 如果只允许公式(*)中的F是非减的有界变差函数,那么如此获得的连续函数势的集合完全由下面性质刻画:对任一实数组t,,…,气, .,买1,(‘,一。,);:乙妻。,其中省1,…,心。是任意复数(Dx加℃r一x阳绷定理(Bo-d川Cr一K坛nch的t卜”记nl)).这样的函数称为正定的(p“itiVe defi山te).Fo~一StieUes变换被广泛地应用在概率论中,其中非减函数 p(x,一宕F‘·,满足附加的限制lizn二_一。尸(x)=0,lim二_+。p(x)二l,而且尸是左连续的;它称为分布(distribution),而 ,“,一丁““’dp‘,,称为(分布尸的)特征函数(chamcte山tic fLtnctjon).于是Rx加℃r一为明咖H定理给出一个连续函数功(满足中(0)=l)是某个分布的特征函数的充要条件. Founer一Stiel勾eS变换在。维情形也已得到发展.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条