1) strictly cosingular operator
严格余奇异算子
2) strictly singular operator
严格奇异算子
1.
As pointed by the author, the sum of two complemented subspaces of Banach space X may not be complemented space of X ; however, when P and Q are all continuous linear projection operators on X and PQ are strictly singular operators, PX+QX are complemented.
指出Banach空间X的两个可补子空间之和未必再是X的可补子空间,但当P和Q都是X上连续线性投影算子且PQ是严格奇异算子时,PX+QX是可补的。
2.
It is proved that existence of nontrivial Riesz operators on general classical Banach spaces, the class of redical operators are large than S(X) , the class of strictly singular operators on some Banach spaces.
讨论一般巴拿赫空间上非紧的黎斯算子存在问题,说明各经典巴拿赫空间上确有这种非平凡的黎斯算子,给出一类空间,其上的根算子理想与严格奇异算子理想是不重合的。
3) reflexive cosingular operator
自反余奇异算子
1.
On the reflexive cosingular operator ideals;
关于弱自反余奇异算子理想
2.
The definition of strictly cosingular operator is generalized to reflexive cosingular operator and weak reflexive cosingular operator.
推广严格余奇异算子的概念,定义自反余奇异算子和弱自反余奇异算子,分别得到了刻画它们的等价特征。
3.
Master s academic article " On the operator ideals of reflexive singular classes and relevant problems " introduces reflexive singular operator, weak reflexive singular operator,reflexive cosingular operator and weak reflexive cosingular operator, generating the concept of strict singular operator,strict cosingular operator and weak compact operator.
硕士学位论文《关于自反奇异类算子理想及其相关问题》引入了自反奇异算子、弱自反奇异算子、自反余奇异算子和弱自反余奇异算子的概念,推广了严格奇异算子、严格余奇异算子及弱紧算子的概念,分五节对其进行研究。
4) weak reflexive cosingular operator
弱自反余奇异算子
1.
Proves the whole of weak reflexive cosingular operators constitute a closed and surjective general operator ideal and the space ideal generated by them is also surjective.
证明了弱自反余奇异算子全体构成(广义)闭、满射算子理想,由其生成的空间理想是满射空间理想。
2.
The definition of strictly cosingular operator is generalized to reflexive cosingular operator and weak reflexive cosingular operator.
推广严格余奇异算子的概念,定义自反余奇异算子和弱自反余奇异算子,分别得到了刻画它们的等价特征。
3.
Master s academic article " On the operator ideals of reflexive singular classes and relevant problems " introduces reflexive singular operator, weak reflexive singular operator,reflexive cosingular operator and weak reflexive cosingular operator, generating the concept of strict singular operator,strict cosingular operator and weak compact operator.
硕士学位论文《关于自反奇异类算子理想及其相关问题》引入了自反奇异算子、弱自反奇异算子、自反余奇异算子和弱自反余奇异算子的概念,推广了严格奇异算子、严格余奇异算子及弱紧算子的概念,分五节对其进行研究。
5) singular operator
奇异算子
1.
A creation for the inverse of singular operator and its application in regulator design;
奇异算子的一种逆化及其应用于奇异系统调节器设计
6) strictly convex operator
严格凸算子
1.
The strictly convex operator and smooth operator are defined, it is shown that if T * is smooth operator, T is strictly convex operator and if T * is strictly convex operator, T is smooth operator.
定义了严格凸算子和光滑算子,证明了若T*是严格凸算子,则T是光滑算子;若T*是光滑算子,则T是严格凸算
补充资料:凹算子与凸算子
凹算子与凸算子
concave and convex operators
凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条