说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 半正稳定矩阵
1)  semi-positively stable matrix
半正稳定矩阵
2)  positively stable matrix
正稳定矩阵
1.
Non-Hermite positive definite matrix and positively stable matrix;
非Hermite正定矩阵与正稳定矩阵
2.
This paper deals with the analysis of relationship between normal matrix and positively stable matrix,some conclusions are drawn.
研究规范矩阵与正稳定矩阵之间的联系,获得一些新的结论。
3)  positive semidefinite matrix
半正定矩阵
1.
We first discuss the connections between Euclidian distance matrix and positive semidefinite matrix under the condition that Ax 0=λx 0, λ≥0, x 0=en, A n×n is a positive semidefinite matrix.
本文从半正定矩阵An×n满足Ax0=λx0,λ≥0,x0=e/n这个条件出发,讨论了欧几里得距离矩阵与半正定矩阵的关系,给出了判别一个欧几里得距离矩阵的充要条
2.
This paper is concerned with the problem of real symmetric positive semidefinite matrix pencil under spectral restriction.
本文讨论谱约束下实对称半正定矩阵束的最佳逼近问题,指出一般算法。
3.
There exist great differences between positive semidefinite matrix and positive definite matrixin the inequality research.
半正定矩阵与正定矩阵在不等式的研究上有相当大的区别,将正定矩阵推广至半正定矩阵,需要用Moore Penrose逆来代替一般的逆。
4)  semi-positive definite matrix
半正定矩阵
5)  positive semi-definite matrices
半正定矩阵
1.
Applying these results, the inequality of Khatri-Rao product about positive semi-definite matrices is generalized to real symmetric matrices, and its inverse inequality and equational condition are also given.
应用这些结果,把一个半正定矩阵Khatri-Rao乘积的不等式推广到实对称矩阵,并给出了它的逆向不等式及其等式条件。
2.
Furthermore,theorem 2 gives and proves a suficient and necessary conditionan for the case of positive semi-definite matrices B by the method of matrices decomposition and block matrice.
给定半正定矩阵B,考虑矩阵可交换问题A惨BA=ABA惨的可解性。
6)  positive semi-definite matrix
半正定矩阵
1.
It shows the proof of four points on a circle by the knowledge of determinant;the methods of resolving applied problems by theories about the solution of homogeneous linear equations;and the proof of inequality by positive definite and positive semi-definite matrix.
讨论利用行列式知识证明四点共圆、利用齐次线性方程组解的理论解有关应用题、利用正定与半正定矩阵知识证明不等式等高等代数方法在中学数学中的应用。
2.
In this paper, two inequalities of the positive semi-definite matrix trace are given.
利用矩阵代数的理论与方法,研究了半正定矩阵的不等式问题,给出半正定矩阵迹的两个不等式。
补充资料:Rees矩阵型半群


Rees矩阵型半群
Rees semi-group of matrix type

R吧矩阵型半群【R昭胭城一gr.lpof叮Iatri旅仃伴;P知e。砚翔"。月犷p邓Ila Ma印11明oro硼a] 按下法定义的一种半群结构.设S为任意一个半群(semi一group),I,A为两个(指标)集合,而p二(尸*,)为S上一个(Axl)矩阵,即由众scartes积A xl到S内的一映射.下列公式定义了集合M‘Ixsx人上的一种运算: (i,s,又)口,t,群)=(i,、户,,t,井)·则M是一半群,称为S上的Rees矩阵型半群并记作‘了(S;I,A;尸);矩阵尸称为才(义I,A;P)的夹层矩阵(sa记wich matrix).若S为带零元O的半群,则Z二{(i,o,又):i任I,又任A}是M=/(S;I,怂尸)中的理想而R。乏商半群(见半群(s蒯-脚uP))M/Z记作/o(S;I,A;P);此时若S二G。为带零元的群,则用符号‘才“(G;I,A;尸)代替了”(G”;I,A;尸)并称为带零元的群G0上的Rees矩阵型半群.群G称为半群.才(G;I,A梦尸)和了‘,(G:I,A;p)的结构群(struct切旧g心up)· 在带零元的罕凑,s士的有夹层(A、I)矩阵尸的矩阵型R曰荡半群也可由下法构造.5上的(1 xA)矩阵称为R日留矩阵(Reesrr坦trix),如果它只包含至多1个非零元.设}!all‘*表示S上的Rees矩阵.其第i行第又个元素为a而其余元素为零.在S上全部(I xA)Rees矩阵的集合上定义运算: A oB二APB,(l)其中右端为“通常”的矩阵乘积.于是上述集合在这一乘法下成为一半群.映射{al},,,巨(i,a,劝为这一半群和半群才。(S;I,A;尸)之间的同构.记号.才“(s;I,A;p)于是可以用于这两个半群.公式(l)解释了尸称为“夹层矩阵”的原因.若G为一个群,则半群‘才“(G;I,人;尸)为正则的,当且仅当矩阵P的每行每列中包含一个非零元;任意半群才(G;I,A;尸)是完全单的(见完全单半群(completelys如-ple~一911〕叩)),任意正则半群(比酬肚sell五~grouP)尸(G;I,A;尸)是完全O单的.上面两个结论的逆命题给出了腼宇理(R。滔tllco~)“11)的主要内容:任何完全单的(完全O单的)半群可以同构地表示成为群上的Rees矩阵型半群(相应地,表示成为一附带零元的群上的正则的Rees矩阵型半群).若.才‘,(G;I,A;P)和了。(G‘;I‘,A‘;P‘)是同构的,则群G和G’是同构的,I和I‘有相同的基数且A和A’有相同的基数.半群.才“(G;I,A;尸)和了“(G‘;I‘;A’;尸‘)同构的一些必要充分条件已经知道,除去刚刚提到的条件外,它们还要包含夹层矩阵P和P‘之间的一个十分确切的关系(见tl]一〔31).特别地,任意的完全0单半群可以同构地表示成一个Rees矩阵型半群,而在其夹层矩阵的一给定的行和给定的列中,每个元素不是为O就是为结构群中的单位元;这种夹层矩阵称为正规化的(加rn刘j左沮).同样的性质对完全单半群也成立.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条