说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 广义离散随机线性系统
1)  singular discrete stochastic linear system
广义离散随机线性系统
2)  singular stochastic discrete nonlinear system
广义离散随机非线性系统
1.
Optimal filtering for singular stochastic discrete nonlinear system;
广义离散随机非线性系统的最优滤波
3)  descriptor discrete-time stochastic system
广义离散随机系统
4)  discrete-time bilinear descriptor systems
双线性离散广义系统
1.
This paper addresses global asymptotic stabilization of a class of discrete-time bilinear descriptor systems.
文章讨论了一类双线性离散广义系统的全局渐近镇定性。
5)  descriptor discrete-time linear systems
广义离散线性系统
1.
The robust H∞ control problem of uncertain descriptor discrete-time linear systems with time-varying norm-bounded parameter uncertainty is studied.
研究了一类具有范数有界参数不确定性广义离散线性系统的鲁棒H∞控制问题。
2.
This paper considers the robust H∞ control problem of uncertain descriptor discrete-time linear systems with time-varying norm-bounded parameter uncertainty.
研究一类具有范数有界参数不确定性广义离散线性系统的鲁棒H∞控制问题。
6)  discrete-time singular bilinear systems
离散广义双线性系统
1.
The problem of passive control on discrete-time singular bilinear systems is considered in this paper.
本文利用广义Lyapunov函数,分析了离散广义双线性系统的无源性。
补充资料:离散随机信号处理
离散随机信号处理
discrete random signal processing

   利用数字运算,对离散随机信号进行各种滤波处理、离散变换和谱分析。随机信号是一种非确定性的信号,如热噪声信号发生器输出的电信号,飞行器起飞时的结构振动,以及起伏海面的波动高度等。它们的共同特点是无法预测其未来瞬间的精确值。处理的目的是便于从中提取有用的信息,削弱信号中的多余信息量,便于估计信号的特征参数,或变换成易于分析和识别的形式等。
   随机信号处理的主要理论基础是信号检测理论、估计理论和随机过程理论。根据理论分析,随机信号的不同样本函数在同一时刻的值往往是不确定的,因而只能用样本函数集的统计平均来描述,如用均值、均方值、方差、概率密度函数、相关函数和功率谱密度函数来描述随机过程的特性。但是,在大多数情况下,被处理的随机信号是具有各态历经的平稳随机过程,它的样本函数集平均可以用某一样本函数的时间平均来确定,这给随机信号的分析和处理带来很大方便。虽然平稳随机信号本身是不确定的,但它的相关函数是确定的,可以利用快速变换算法来计算。相关函数的傅里叶变换或Z变换表示随机信号的功率谱密度函数,简称为功率谱。功率谱是描述随机信号基本特征的重要参数,而功率谱估值是按照实际观测的有限数据估计得到的,它必然与真实的功率谱值有差别。为了减小谱分析偏差和提高谱分辨率,产生了多种谱估计方法。
   在非平稳随机信号处理中,非平稳随机过程的特征函数一般是随时间而变化的,不能再用时间平均代替集平均,只能用组成过程的样本函数集的瞬时平均来描述其特性。因而求得的功率谱是随时间变化的谱。这种时变功率谱的计算方法仍在研究中。卡尔曼滤波和最大熵法是处理非平稳随机信号的有用方法。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条