1) micropolar generalized magneto-thermoelasticity
微极广义磁热弹性
2) generalized magneto-micropolar thermoelasticity
广义磁-微极热弹性
3) generalized magneto-thermoelasticity
广义磁热黏弹性
4) generalized thermoelasticity
广义热弹性
1.
The determination of thermoelastic displacement,stresses and temperature in a functionally graded spherically isotropic infinite elastic medium having a spherical cavity in the context of the linear theory of generalized thermoelasticity with two relaxation time parameters(Green and Lindsay\ theory)are concerned with.
在带两个松弛时间参数的广义热弹性线性理论(Green和Lindsay理论)意义上,研究含一个球形空腔的功能梯度球形各向同性无限大弹性介质中,热弹性位移、应力和温度的求解方法。
2.
Finite element nonlinear equations based on Lord-Shulman(L-S) generalized thermoelasticity theory are derived for elastic media with temperature-dependent properties and solved directly in time domain.
计及材料特性与温度的相关性,基于Lord和Shulman(L-S)广义热弹性理论,建立了此类问题的有限元控制方程。
5) generalized thermoelasticity theory
广义热弹性理论
1.
The problem is in the context of the Green and Lindsay s generalized thermoelasticity theory with two relaxation times.
应用带有两个热松弛时间的G-L广义热弹性理论,研究一理想导体的半无限大电磁介质的电磁热弹耦合的二维问题。
2.
Based on Green and Lindsay’s generalized thermoelasticity theory with two relaxation times, a two-dimensional coupled problem in electromagneto-thermoelasticity for a rotating half-space solid subjected to a heat on its surface is studied.
基于广义热弹性理论,研究了热和电可导的旋转半无限大体在其表面受随时间变化的热作用的广义电磁热弹性耦合的二维问题。
6) generalized thermoelastic diffusion
广义热弹性扩散
补充资料:微极弹性固体
广义连续介质力学中一个典型的物质模型,是由可以平移和独立进行转动的微小刚性物质点组成的弹性固体。它是古典弹性固体模型的推广。为了大体上看出微极弹性固体和一般弹性固体这两种模型的差异,下面给出各向同性线性微极弹性固体的本构方程:
tij=λδijekk+(μ+κ)eij+μeji,
mij=αδijγkk+βγij+γγji,式中tij和 mij为应力张量和力偶应力张量;λ、μ、κ、α、β、γ为物性模量;δij为克罗内克符号;eij和γij为应变张量,可表示为:
eij=ui,j-εijk嗞k,
γij=嗞i,j,式中ui和嗞i为位移矢量u和微转动矢量嗞的分量,εijk为交错张量(见张量)。古典弹性力学中各向同性线性弹性固体的本构方程为:
tij=λδijekk+2μeij,式中λ和μ为拉梅常数。通过比较可见,在微极弹性固体中,由于考虑微极效应,总共需要6个物性模量,应力张量不再对称,并且出现力偶应力。
tij=λδijekk+(μ+κ)eij+μeji,
mij=αδijγkk+βγij+γγji,式中tij和 mij为应力张量和力偶应力张量;λ、μ、κ、α、β、γ为物性模量;δij为克罗内克符号;eij和γij为应变张量,可表示为:
eij=ui,j-εijk嗞k,
γij=嗞i,j,式中ui和嗞i为位移矢量u和微转动矢量嗞的分量,εijk为交错张量(见张量)。古典弹性力学中各向同性线性弹性固体的本构方程为:
tij=λδijekk+2μeij,式中λ和μ为拉梅常数。通过比较可见,在微极弹性固体中,由于考虑微极效应,总共需要6个物性模量,应力张量不再对称,并且出现力偶应力。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条