说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> θ_子群
1)  θ _subgroups
θ_子群
2)  θ se characteristic method
θ_(se)特型法
3)  θ_(n,k)(T)-graphs
θ_(n,k)(T)-图
4)  sub-cluster
群子
1.
Studies on the Relationship of Mechanical Properties and Micro-morphology and Sub-cluster Parameters of High Toughened and Strengthened PPO/PA6 Alloy;
高强高韧PPO/PA6合金的力学性能—亚微相态—群子参数之间关系的研究
2.
Studies on the Relationship of Combustibility and Mechanism of Combustion and Sub-cluster Parameters of Flame Retarded PET and Its Fibers;
阻燃PET及其纤维的燃烧性能—燃烧机理—群子参数之间关系的研究
3.
In order to describe all types of viscosity-composition curves of polymer blends wihh mathematical model, sub-cluster equations were derived on the basis of "sub-cluster theory".
为用统一的数学模型对高分子合金的粘度-组成曲线进行描述,运用群子理论的基本概念,推导出了不同形式的“群子方程”。
5)  subgroup [英]['sʌbɡru:p]  [美]['sʌb'grup]
子群
1.
Directed subgroup graph for studying the subgroup properties of finite groups;
利用有向子群图研究有限群的子群性质
2.
Relation between direct sum group and subgroup of direct sum group;
直和群及其子群之间的关系
3.
Study on structure of subgroup of direct sum group;
直和群的子群结构的研究
6)  subgroups
子群
1.
The Existence of Nilpotent Hall π Subgroups;
幂零Hall π-子群的存在性
2.
Because the inverse of Lagrange theorem of finite group is not hold,it is difficult to determine all the subgroups of A_n,to determive whether An has the same order subgroups for any positive factor of the absolute value of |An|.
由于有限群的L agrange定理的逆不成立,当n较大时,要确定n次交代群An的所有子群,以及对于An的任一正因数,要确定A n是否有这个阶数的子群都要较困难的,文章通过计算5-循环置换各次方幂,再把各次方幂中的第4个数字去掉,得到4个2×2置换的乘积,从而构造出A 5的6个10阶子集,并证明了每个子集是A5的子群。
3.
Using Lagrange s theorem and the concept of n-letters symmetric group,we have Proved the only existence 30 certainly subgroups of the 4-letters symmetric group S4, getting rid of 2 normal subgroups, it has 9 2-order cyclic subgroups , 4 3-order cyclic subgroups,3 4-order cyclic subgroups, 4 Klein 4-elements groups 4 S4 (at the time of isomorphic meaning), 3 8-elements groups and 1 A4.
使用Lagrange定理及n次对称群的基本概念证明了4次对称群存在且只存在30个子群,并给出了每个子 群。
补充资料:单参数子群


单参数子群
one-parameter subgroup

  单参数子群〔泄·脚.”州甘,魄”甲;呱”ou叩明eTp”-业一no月rpy,aJ,赋范域K上球群G的 域K的加法群到G的解析同态,即解析映射献K~G,满足 。(s+r)二:(s):(t),s,t〔K.这个同态的象是G的子群,也称为单参数子群.如果K二R,则由同态献K~G的连续性可推出它是解析的.如果K=R或C,则对于任意G在点e处的切向量X‘双G,存在唯一的单参数子群献K~G以X作为其在点t=O处的切向量.这里,(t)=cxp tX,作K,Cxp:兀G~G是指数映射(expo理而a】mapp川g).特别地,一般线性群(罗璐阁址篮翔比gro叩)G”GL(n,K)的任一单参数子群形如 ·‘亡,一p‘X一。氰告:·x:如果G是一个具有双边不变的伪Rlerr.nn度量或仿射联络的实L记群,则G的单参数子群是通过单位元e的测地线.
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条