1) tri-curve
三曲线
2) Cubic curves
三次曲线
1.
Using the theories of polarity and the properties of cubic curves on Newton s classification.
应用三次曲线的配极理论及其基本性质 ,讨论了三次曲线牛顿分类的依据 ,确定了牛顿分类中 4种形式和 7类曲线所对应的坐标系。
3) Cubic curve
三次曲线
1.
Research of a class of cubic curve graphs;
一类三次曲线图形的研究
2.
In this paper we give the general form of a class of cubic system with cubic curve solution y=ax3+bx2+cx+d and we prove that this system has no limit cycle in the whole plane.
给出了以三次曲线y=ax3+bx2+cx+d为解的一类三次系统的一般形式,并证明了该类 系统在全平面上不存在极限环。
4) trigonometric curves
三角曲线
1.
The second chapter deals with a class of 3-degree continuous trigonometric curves with the shape parameter,the curve that interpolates start point and end point is analogous to Bézier curve,the larger isλ,the curve comes more near the control polygon,the elliptic and parabolic arcs can be represented exactly by the curve.
本文一共包含五章内容 第一章,简单介绍了研究背景及主要研究内容; 第二章提出了一种带参数的三次三角曲线,具有类似Bézier曲线的性质,插值于起点和末点,λ越大越接近控制多边形,利用此曲线能精确表示椭圆与抛物线弧。
2.
This paper deals with the problem of trajectory synthesis using trigonometric curves,which are defined by sinusoidal functions and their harmonics.
这篇论文介绍如何使用三角曲线进行轨迹合成。
5) three-dimensional curve
三维曲线
1.
Studies in three-dimensional curve interpolation arithmetic
三维曲线轨迹插补的研究
2.
It also provides the theory basis and example for the construction of large orifice three-dimensional curve jacking in busy plot of big cities .
为大口径三维曲线顶管在大城市繁华地段施工和环境保护提供了理论依据和实例。
6) trigonometric curve
三角曲线
1.
A kind of quadratic parametric trigonometric curve is presented on special quadratic trigonometric basis, which basis functions have two parameters.
给出了一种类似Bzier曲线的二次参数三角曲线,其基函数由一组带有两个参量的二次三角函数组成。
补充资料:Hesse曲线(代数曲线的)
Hesse曲线(代数曲线的)
Hessian (algebraic curve)
11油限曲线(代数曲线的)【H台自11(.妙如允.抖e);recc咖,T~aaa,即r药pa一吸ee二o‘二p.助蓝] n次代数曲线(司罗玩水c~)的He丈祀曲线就是其极二次曲线能分裂为两条直线的点的集合,也是第一极曲线的二重点构成的集合.n次非奇异曲线的He丈七曲线是一条次数为3伪一2)、类为3(n一2)(3n一7)的曲线.设介O是这条n次曲线的齐次坐标方程,关丘=刁:f/刁xi刁、,则它的He丈犯曲线的定义方程为 !不:关:五,} }五:关:五31=0. }人,人2人3}特征不等于3时的三次非奇异曲线的H既七曲线与这条曲线交于9个通常拐点.因O.H改e(l 844)而得名. A .E.H困阳。B撰
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条