说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 分次Abel正则环
1)  gr-avelian reguiar ring
分次Abel正则环
2)  Abelian regular ring
Abel正则环
3)  Abelian π-regular ring
Abel π-正则环
4)  graded regular ring
分次正则环
1.
In this paper, we study the property of graded quasi-regular rings, and consider the condition that a graded quasi-regular ring becomes a graded regular ring.
将分次正则环的概念推广到分次拟正则环上 ,研究了分次拟正则环的若干重要性质 ,并给出了分次拟正则环成为分次正则环的条
2.
In this paper, We discuss some properties of graded regular rings and give a structure theorem of graded regular rings.
讨论了分次正则环的若干性质,并给出了分次正则环的一个结构定理。
5)  abelian regularity
Abel正则性
1.
In this paper, we give the relations between related comparability and one-sided unit regularity and the relations betuven abelian regularity and strongly π-regularity.
本文给出了Rc-比较性和单边单位正则性以及Abel正则性和强π-正则性之间的一类关系。
6)  graded Von Neumann regular ring
分次Von Neumann正则环
1.
We prove that S is a graded right V-ring if and only if R is a graded right V-ring,S is graded PS-ring if and only if R is a graded PS-ring,and S is a Von Neumann regular ring if and only if R is a graded Von Neumann regular ring.
本文引进了分次环的分次Excellent扩张概念,设S=⊕_(g∈G)S_g是R=⊕_(g∈G)R_g的分次Excellent扩张,证明了S是分次右V-环当且仅当R是分次右V-环,S是分次PS-环当且仅当R是分次PS-环,S是分次Von Neumann正则环当且仅当R是分次Von Neumann正则环。
补充资料:巨正则配分函数
      其定义为:式中λ为乘因子,相当于粒子的绝对活度;n为巨正则系综中体系的粒子数;Qn为n个粒子体系的正则配分函数。巨正则配分函数与体系的热力学函数之间的关系为:
  
  
  式中p为压力;V为体系的体积;k为玻耳兹曼常数;T为热力学温度;E为体系的能量。
  
  在巨正则系综中,具有粒子数ni,能量Ei的体系出现的几率为:
  
  
  式中N为总体系数;表示具有粒子数为ni,能量为Ei的体系数;W(ni,Ei)表示粒子数为ni,能量为Ei的体系的微观态数。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条