说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 分次强π正则性
1)  graded strongly π-regularity
分次强π正则性
1.
In this paper are discussed the property relations among R,A and T for graded strongly π-regularity, weakly graded direct finiteness and some graded ring properties in close relationship with graded J-radical.
分次强π正则性、弱分次直有限性和与分次 J根密切相关的几个分次环性质 ,讨论了 T与 R,A之间的性质关系 。
2)  stronglyπ-regularity
强π-正则性
3)  π-regularity
π-正则性
4)  strongly π-regular rings
强π-正则环
1.
We also study the relationship among the Strongly regular rings,Strongly π-regular rings and Strongly Quasi-Clean rings.
本文定义强拟-C lean环,使用通常环论方法证明强拟-C lean环的同态象、直积、对角矩阵仍是强拟-C lean环,讨论强正则环、强π-正则环与强拟-C lean环之间的关系。
5)  strongly π-regularity and exchange ring
强π-正则性和Exchange环
6)  strongly π-regular general ring
强π-正则一般环
1.
Extensions of strongly π-regular general rings;
强π-正则一般环的扩张(英文)
补充资料:巨正则配分函数
      其定义为:式中λ为乘因子,相当于粒子的绝对活度;n为巨正则系综中体系的粒子数;Qn为n个粒子体系的正则配分函数。巨正则配分函数与体系的热力学函数之间的关系为:
  
  
  式中p为压力;V为体系的体积;k为玻耳兹曼常数;T为热力学温度;E为体系的能量。
  
  在巨正则系综中,具有粒子数ni,能量Ei的体系出现的几率为:
  
  
  式中N为总体系数;表示具有粒子数为ni,能量为Ei的体系数;W(ni,Ei)表示粒子数为ni,能量为Ei的体系的微观态数。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条