1) product law
乘积定律
2) product theorem
乘积定理
1.
For the elliptic partial differential equations of variable coefficient,we obtain the product theorem of asymptotic expansions of energy integral as follows:B(w,v_h)=∑ni=1h~(2i)_e∫_ΩF_i(D~(2i-2)_x(v_(xx)φ))v_hdxdy+∑nj=1k~(2j)_e∫_ΩG_j(D~(2j-2)_y(u_(yy)φ))u_hdxdy+∑ni+j=2h~(2i)_ek~(2j)_e∫_Ω[F_(ij)(D~(2i-2)_xD~(2j)_y(u_(xx)φ))+G_(ij)(D~(2i)_xD~(2j-2)_y(u_(yy)φ))]v_hdxdy+R_(n,h).
针对变系数椭圆型方程矩形元,证明了能量积分的渐近展开具有如下的乘积定理:∫Ω∫Ωk2jh2iFi(D2i-2Gj(D2j-2B(w,uh)=∑ny(uyyφ))vhdxdy+ex(uxxφ))vhdxdy+∑nei=1j=1∫Ω∑nh2i[Fij(D2i-2eek2jxD2j-2y(uyyφ))]vhdxdy+Rn,h。
2.
In this paper,we prove the product theorems of the infinite matrix operator algebra (λ,μ), with respect to the left (right) strong or K convergence.
本文证明了无穷矩阵算子代数(λ,μ)在左(右)强、K收敛意义下的乘积定理成立,给出(λ,μ)在弱收敛意义下乘积定理成立的充要条件。
3) Tychonoff product theorem
Tychonoff乘积定理
4) area law
面积定律
1.
Based on the perturbative QCD predictions of gluonic distributions and branch cross section of the J/(?) decay via hadronic, electromagnetic,and radiative channels, the strict solutions of LUND area law of string fragmentation had-ronization are used to treat nonperturbative hadronic production processes, a possible description and Monte Carlo packet for the J/(?) hadronic decay are obtained.
基于微扰QCD所预言的J/ψ衰变道胶子分布及其分支截面和LUND弦碎裂模型强子化面积定律的严格解,得到J/ψ所有衰变模式的微扰和非微扰过程的一种可能的描述,相应的Monte Carlo产生器LUARLW所作的初步模拟结果与BES获取的J/ψ数据的多种带电粒子谱分布和事例形状拓扑分布符合较好。
2.
In the teaching of central field, we should pay attention to turning the relative motion of two - body into one dimentuonal radial motion by introducing two physical concepts of reduced mass and effective potential energy, and we should also pay attention that the area law is the geometrical description of the conservation of angular momentum in the central field.
在有心力场教学中,应着重强调指出:通过引入折合质量和有效势能这两个物理量,把二体相对运动问题转化为单体沿径向的一维运动问题;以及面积定律是质心在有心力场中角动量守恒的几何描述。
5) multiplicative concepts
乘法运算定律
1.
Designing a special math test proved that different problems contexts make effect to using the multiplicative concepts.
通过设置不同问题情景引导被试利用乘法运算定律解决数学问题,探讨不同问题情景对小学四、六年级学生运用乘法运算策略的影响。
6) multiplication law (of probability)
(概率)乘法定律
补充资料:乘积
1.两个或两个以上的数相乘所得的数。简称积。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条