1) fuzzifying convex set
不分明化凸集
1.
Abstract:In this paper, we used a semantic method of continuous - valued logic to develop fuzzyconvex set from a completely different direction and thereby have established elementary fuzzifyingconvex set which is dual to the existing fuzzy convex set, and given the algebraic properties and thetopological properties of fuzzifying convex set.
在本文中,我们使用连续值逻辑的语义的方法从一个完全不同的方向建立了不同于人们所熟知的模糊凸集的不明化凸集的概念,并给出了不分明化凸集的代数和拓扑性质。
2) intuitonistic fuzzifying convex sets
直觉不分明化凸集
1.
In this paper,intuitonistic fuzzifying convex sets are extended by a unary predication and by the adopting of semantic method of L-lattice valued logic.
本文在L*-格值逻辑的语义框架下,以L*-格值上的Lukasiewicz蕴涵算子为工具,定义了L*-格值逻辑上的直觉不分明化凸集的概念,将用集论所刻画的凸集在L*-格值谓词演算下给予了新的刻画,讨论了直觉不分明化凸集的有关代数性质。
3) Fuzzy set
不分明集
4) fuzzy α-set
不分明α-集
5) fuzzifying limit point sets and adhere point sets
不分明化极限点集与附贴集
6) fuzzifying rings
不分明化环
1.
Fuzzifying Rings Based on Continuous Valued Logic;
基于连续值逻辑上的不分明化环
2.
In this paper, we use the semantic method of continuous valued logic which has been proposed by professor Mingsheng Ying in early 1990 s to introduce the so called fuzzifying rings concept, and discuss some of its algebraic properties.
运用应明生教授于 90年代早期提出的连续值逻辑语义的方法引入了不分明化环的概念 ,并且讨论了它的若干性
补充资料:凸凸
1.高出貌。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条