1) L-fuzzifying topological space
L-fuzzifying拓扑空间
2) Fuzzifying topology spaces
Fuzzifying拓扑空间
3) L-fuzzifying topology
L-fuzzifying拓扑
4) fuzzifying bitopological spaces
Fuzzifying双拓扑空间
1.
The paper puts forward fuzzifying bitopological spaces and connected concept in fuzzifying bitopological spaces,discusses equivalent conditions and character of connection in fuzzifying bitopological spaces.
本论文由两篇相对独立的文章组成:一、是一般拓扑学中《第一可数T_2强半正规绝对闭空间的等价条件》;二、是模糊拓扑学中《Fuzzifying双拓扑空间中的连通性》。
5) L-topological space
L-拓扑空间
1.
Local ultra-F_2 compactness in L-topological space;
L-拓扑空间的局部超F_2紧性
2.
*-Nearly paracompactness in L-topological spaces;
L-拓扑空间中的*-拟仿紧性
3.
F*-Paracompactness in L-topological spaces;
L-拓扑空间中的F*-仿紧性
6) L-topological spaces
L-拓扑空间
1.
A new type of strong connectivity in L-topological spaces;
L-拓扑空间一型新强连通性
2.
(Strongly) Relative semi-compactness in L-topological spaces;
L-拓扑空间的(强)相对半紧性
3.
Relative S_β-compactness in L-topological Spaces;
L-拓扑空间的相对S_β-紧性
补充资料:不可约拓扑空间
不可约拓扑空间
irreducible topological space
不可约拓扑空间【沂曰州bleto州哈口I明ce;HenP“BO-皿Moe功no加r“tlecICOe nPocTP,cTBOI 不能表作两个真闭子集之并集的拓扑空间(topolo-百以lspace).不可约拓扑空间也可以等价地定义为:它的任意开子集都是连通的或任意非空开子集都是处处稠密的.不可约拓扑空间在连续映射下的象是不可约的.不可约拓扑空间之积是不可约的.不可约拓扑空间的概念仅对不可分离空间有意义;它常用于涉及非分离的2汤‘目d拓扑(z五riski topofogy)的代数几何学. 拓扑空间X的不可约分支(irn习ueible comP0nent)是X的任一极大不可约子集.不可约分支是闭的,它们的并集就是整个X.B.H.八aHHJIoB撰【补注】在覆盖理论(见菠盖(集合的)(coVe功19(ofset)))中还有不可约性的概念:一个拓扑空间是不可约的,如果它的每个开覆盖都有不可约的开加细;一个覆盖是不可约的(谊曰ueible),如果它的真子族都不是覆盖.可数紧空间(cou幻tablv .CompactsP暇)由条件“每个不可约开覆盖都是有限的”来刻画.于是,一个空间是紧的,当且仅当它是可数紧且不可约的.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条