1) hereditarily weakly suborthocompact
遗传弱Subortho-紧
2) weakly subortho-compact
弱subortho-紧
1.
The following conclusions are proved:(1) Let X= Πσ ∈ΣXσbe │Σ│-paracompact,then it is weakly subortho-compact if Πσ∈FXσis weakly subortho-compact for every F∈[Σ]< ω.
文章证明了如下结果:(1)如果X=Πσ∈ΣXσ是│Σ│-仿紧空间,则X是弱subortho-紧空间当且仅当F∈[Σ]<ω,X=Πσ∈F Xσ是弱subortho-紧空间。
3) hereditarily normal weakly submetacompact
遗传正规弱次亚紧
4) hereditarily |∑|-paracompact
遗传|∑|-仿紧
1.
This paper mainly proves: (1) Let X =Πσ∈hereditarily |∑|-paracompactXσ be hereditarily |∑|-paracompact|hereditarily |∑|-paracompact| hereditarily |∑|-paracompact, X is hereditarily |∑|-paracompactnormal weak θ -refutable if Πσ∈hereditarily |∑|-paracompactXσ is hereditarily |∑|-paracompactnormal weak θ -refinable for every F ∈ [hereditarily |∑|-paracompact]<ω.
主要证明:(1)如果X=Πσ∈∑Xσ是遗传|∑|-仿紧空间,则X是遗传正规弱(?)-可加空间当且仅当(?)F∈|∑|<ω,Πσ∈FXσ是遗传正规弱(?)-可加空间。
5) Hereditarily mesocompact
遗传Meso-紧
6) hereditary compeciness
遗传紧性
补充资料:胎紧浸入和套紧浸入
胎紧浸入和套紧浸入
tight and taut immersions
矍数) 图3 犷鳖{ 图4 称空间A CB的嵌人在Z:同调中为单射的(in-Jeetive),如果对于i)0,诱导同态万.(注,22)~H.(B,22)是单的.令HC=R“是R“中带有超平面边界aH的半空间.例如, H=H:(t)={x“R“:z’(x)簇r}.如果f是一个胎紧浸人,h:是一个非退化的高度函数,那么由Morse理论得到f一’(万:(r))C=M在22同调中是单的.于是由连续性,对任一半空间H这种单性都成立.对于闭流形的光滑浸人,这种半空间性质等价于胎紧性.然而,这种半空间定义也能应用于更大范围的从流形和其他紧拓扑空间到RN中的连续浸人或甚至是映射中去.一个例子是胎紧的“瑞士干酪”,它是一个带边的嵌人曲面,见图5.一个到R中的胎紧映射也称为一个完满函数(详rfect丘inction).公 图5今 图6 对于曲线和闭曲面,半空间性质可导出对任一半空间H,f一’(H)是连通的.它等价于R功ehoff两片性质(R朔chofft场。一pieee pro详rty),即R“中的任一超平面日H将M至多分割成两个连通的片,见图3和图4中的胎紧曲面和图2中的非胎紧曲线. 半空间定义将胎紧性置于经典几何学和凸性理论之中.由于胎紧性在RN中的任意将凸包才(f(M))映到RN内的射影变换下是不变的,因此胎紧性是一个射影性质(见射影几何学(projeetive罗。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条