2) the nil-extension of normal orthogroup
正规Orthogroup的nil-扩张
1.
Giving the quasi-c-congruence on the nil-extension of normal orthogroup and its some properties.
给出了正规Orthogroup的nil-扩张的拟C-半群同余及性质。
3) semilattices of nil-extensions of right groups
右群的nil-扩张的半格
4) nil-extension of completely simple semigroup
完全单半群的nil-扩张
1.
We mainly get the result that there is a bijection between the set of all group congruence and the set of congruence subsemigroup on the nil-extension of completely simple semigroup.
论述了完全单半群的nil-扩张上的群同余与同余子半群之间的一一对应关系,即每个同余子半群可诱导出一个群同余,而每个群同余的核是一个同余子半群。
5) semilattices of nil-extentions of rectangular groups
左群的nil-扩张的半格
6) semilattices of nil-extentions
矩形群的nil-扩张的半格
补充资料:极大扩张和极小扩张
极大扩张和极小扩张
maximal and minimal extensions
极大扩张和极小扩张匡.习的司出目.公油抽lex妇心.旧;MaKcl.Ma刀‘.oe H Mll.”M田.妇oe PaC山一Pe皿朋] 一个对称算子(s笋nr贺苗c opemtor)A的极大扩张和极小扩张分别是算子牙(A的闭包,(见闭算子(cfo“月。详mtor”)和A’(A的伴随,见伴随算子(呐。int opera.tor)).A的所有闭对称扩张都出现在它们之间.极大扩张和极小扩张相等等价于A的自伴性(见自伴算子(义休.adjoint operator)),并且是自伴扩张唯一性的必要和充分条件.A.H.J’Ior朋oB,B.c.lll户、MaR撰
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条